Problem Review Session 7
 PHYS 741

Zach Nasipak

March 28, 2018

Disclaimer: The problems below are not my own making but are taken from A Guide to Physics Problems: Part 2 (GPP2), Princeton Problems in Physics (PPP), and past qualifying exams from UNC (Qual).

Practice Problems

1. (PPP 4.2) Consider a heteronuclear diatomic molecule with moment of inertia I. In this problem, only the rotational motion of the molecule should be considered.
(a) Using classical statistical mechanics, calculate the specific heat $C(T)$ of this system at temperature T.
(b) In quantum mechanics, this system has energy levels

$$
E_{j}=\frac{\hbar^{2}}{2 I} j(j+1) \quad j=0,1,2, \ldots
$$

Each j level is $(2 j+1)$-fold degenerate. Using quantum statistical mechanics, find expressions for the partition function \mathcal{Z} and the average energy $\langle E\rangle$ of this system, as a function of temperature. Do not attempt to evaluate these expressions.
(c) By simplifying your expressions in (b), derive an expression for the specific heat $C(T)$ that is valid at very low temperatures. In what range of temperatures is your expression valid?
(d) By simplifying your answer to (b), derive a high-temperature approximation to the specific heat $C(T)$. What is the range of validity of your approximation?
2. (Qual 2015 SM-4) We are interested in some basic properties of the density matrix in quantum statistical mechanics. Consider a system with Hamiltonian H. Let the set of normalized states $\left|\psi_{k}(t)\right\rangle$ be an ensemble of possible states of the system obeying the Schrodinger equation. The density matrix is given by $\rho=\sum_{k} p_{k}\left|\psi_{k}\right\rangle\left\langle\psi_{k}\right|$.
(a) Given that the trace of ρ^{2} is equal to 1 for pure states and less than 1 for a mixture, show that a pure state cannot evolve into a mixture or vice versa by considering $\frac{\partial \operatorname{Tr} \rho^{2}}{\partial t}$.
(b) Show that equilibrium statistical mechanics is described by a density matrix of the form $\rho=\rho(H)$ by considering $\frac{\partial \rho}{\partial t}$.
3. (GPP2 4.47) The upper end of a hanging chain is fixed while the lower end is attached to a mass M. The (massless) links of the chain are ellipses with either the major axis or the minor axis vertical. The major axis has a length of $l+a$, while the minor axis has a length of $l-a$. Assume that the chain has N links and is in thermal equilibrium at temperature T.
(a) Find the partition function.
(b) Find the average length of the chain.

