Problem Review Session 6 PHYS 741

Zach Nasipak

March 19, 2018

Disclaimer: The problems below are not my own making but are taken from Pathria's <u>Statistical Mechanics</u> (PSM) and past qualifying exams from UNC (Qual).

Practice Problems

- 1. (Qual 2011 SM-5) A long vertical tube with a cross-section area A contains a mixture of n different ideal gases, each with the same number of particles N, but of different masses m_k , k = 1, ..., n. Find a vertical position of the center of mass of this system in the presence of the Earth's gravity, assuming a constant altitude-independent free fall acceleration g.
- 2. (Qual 2012 SM-3) Consider a classical gas of N identical particles. The energy of the system is given by

$$H = \sum_{i=1}^{N} \frac{p_i^2}{2m} + \sum_{i < k} U_{ik}(|\vec{r}_i - \vec{r}_k|).$$

In the dilute (atomic volume $\times N \ll V/N$) and high temperature ($|U| \ll kT$) approximation it can be shown that the partition function can be written as

$$Z(T,V,N) = \frac{1}{N!} \left(\frac{1}{\lambda^3}\right)^N Q_N(V,T) \quad \text{where} \quad \lambda = \frac{h}{\sqrt{2\pi m k T}},$$

and the configurational integral $Q_N(V,T)$ is given by

$$Q_N(V,T) = V^N + V^{N-2} \sum_{i < k} \int d^3 r_i \int d^3 r_k (e^{-U_{ik}/kT} - 1).$$

Assume the potential is given by the hard sphere potential

$$U_{ik}(|\vec{r}_i - \vec{r}_k|) = \begin{cases} \infty & |\vec{r}_i - \vec{r}_k| < r_0 \\ 0 & |\vec{r}_i - \vec{r}_k| \ge r_0 \end{cases}$$

where r_0 is the radius of the sphere. Show that the equation of state is given by

$$P\left(V - N\frac{2\pi}{3}r_0^3\right) = NkT.$$

3. (PSM 4.4) The probability that a system in the grand canonical ensemble has exactly N particles is given by

$$p(N) = \frac{z^N Q_N(V,T)}{\mathcal{Z}(z,V,T)},$$

where $z = e^{\beta\mu}$ is the fugacity, $Q_N(V,T)$ is the partition function and $\mathcal{Z}(z, V, T)$ is the grand partition function. Verify this statement and show that in the case of a classical, ideal gas the distribution of particles among the members of a grand canonical ensemble is identically a Poisson distribution. Show that

$$\overline{(\Delta N)^2} = kT \left(\frac{\partial N}{\partial \mu}\right)_{T,V}$$

where \overline{N} is the average number of particles. Calculate the root mean square fluctuation ΔN for this system from the formula above and from the Poisson distribution, and show that they are the same.

Additional Problem

4. (PSM 4.7) Consider a classical system of noninteracting, diatomic molecules enclosed in a box of volume V at temperature T. The Hamiltonian of a single molecule is given by

$$H(\vec{r_1}, \vec{r_2}, \vec{p_1}, \vec{p_2}) = \frac{1}{2m}(p_1^2 + p_2^2) + \frac{K}{2}|\vec{r_1} - \vec{r_2}|^2,$$

where m and K are constants. Study the thermodynamics of this system, including the dependence of the quantity $\langle |\vec{r_1} - \vec{r_2}|^2 \rangle$ on T.

Session 6 Knoldern 1 Qual 2011 SM-5 The center of mass for the entire mixture is given by $Z_{CM} = \sum_{k=1}^{n} Z_k M_k$ where Z_k is the average $\sum_{k=1}^{n} M_k$ beight of mixture k Therefore we just need to solve for Zk. This can be done from the canonical ensemble approach, where $\mathcal{F}_{k} = \frac{1}{Q^{k}} \int \mathcal{F}_{e}^{-\beta \left(P^{2} m_{*} + m_{k} q^{2}\right)} \frac{d^{3}q d^{3}p}{h^{5}}$ where Q1 is the partition function of a single perticle w/ mass Mk $Q_{1}^{k} = \int \frac{d^{3}pd^{3}q}{d^{3}} e^{-\beta(P^{2}/2m_{k}+M_{k}g^{2})}$ The integrals over monnenta space cancel. Additionally integrals over all spatial coordinates tesides the Z-coordinate will cancel. This leaves us with If he define X = Bring thun $z_k = -\frac{\partial \ln T_k}{\partial x}$ $w = T_k = \int e^{-\alpha t} dt = \frac{1}{\alpha}$ Therefore Zy = 1/x 8 we can find the center of mass of the mixture Fem = 2 Mie/Miefg M. when M= 2 Mk $z_{cm} = \frac{nk_{B}T}{Mq}$

Session 6 Problem 2 Qual 2012 SM-3
Essentially for this problem we are calculating the first visial deficent
for a non-ideal reacting interacting gas then is approximated by a
hard-sphere potential.
We can determine the equation of state by vecaling that

$$P = -(\frac{\partial A}{\partial V})_{NT} \quad \& A = -bT \ln Z$$

where Z is the partition function gives by the pablian $Orber$ the
 $Orber = (\frac{\partial A}{\partial V})_{NT} = \int_{ON} (\frac{\partial Q_N}{\partial V})_{NT}$
So now ... need to evaluate Q_{N} , which is given by
 $Q_N = V^N + V^{N-2} \underset{(ck)}{\geq} d^3r_i \int d^3r_k (e^{\beta Vik} - 1)$
We can simplify this expression by defining the displacement vector
 $R_{ik} = F_i - P_k$. Note that the Jacobian
 $\frac{\partial T_{ik}}{\partial T_i} = 1 \Rightarrow \int d^3r_i = \int d^3r_{ik} (1 + herefore we can
 $\frac{\partial T_{ik}}{\partial T_i} = 1 \Rightarrow \int d^3r_{ik} (e^{\beta Vik} - 1)$
Notice that the integrand any depends on $T_{ik} \equiv |\tilde{T}_{ik}|$ therefore we can
immediately evaluate the other integral, which just gives us arother
 $P = R_{ik} = V^N + V^{N-1} \underset{(ck)}{\leq} \int d^3r_{ik} (e^{-\beta Vik} - 1)$
Notice that the integrand any depends on $T_{ik} \equiv |\tilde{T}_{ik}|$ therefore we can
immediately evaluate the other integral, which just gives us arother
 $P = Q_N = V^N + V^{N-1} \underset{(ck)}{\leq} \int d^3r_{ik} (e^{-\beta Vik} - 1)$
Transforming to spherical coordinates, we see that this further simplifier to
 $Q_N = V^N \begin{bmatrix} 1 + \frac{4\pi}{V} \int_{ck}^{c} dr_{ik} (e^{-\beta Vik} - 1) \end{bmatrix} rr_{ik}^2$$

Considering the form of our potential, the integrand is only how-zers for

$$\pi_{ik} < r_0$$

=) $Q_N = V^N [1 - \frac{4\pi}{V} \sum_{i < k} \int_{0}^{0} d\pi_{ik} \pi_{ik}^2]$ using $e^{\beta U_{ik}} = 0$
for $\pi_{ik} < r_0$, $U_{ik} = \infty$
= $V^N [1 - \frac{4\pi}{V} \sum_{i < k} (\frac{r_0^3}{3})]$

Now we just need to evaluate the sum, which is essentially country the number of two -particle interactions that could occur. We have N particles, so if we choose a particle, then are (N-1) particles it can interact with. If we do this type of pairing then we would count

N(N-1) painings

but this double counts the interaction between particle 1 & particle 2 by also country the interaction between particle 2 & particle 2. Therfore we need to divide by 2 to account for louble country. This gives us $Q_N = V^N \left[1 - \frac{4\pi r_s^3}{3V} \frac{N(N-1)}{3V} \right]$

$$\simeq V^{N} \left[1 - \frac{N^{2}}{V} \frac{2\pi r_{s}^{3}}{3} \right]$$
 using that $N >> 1$ so $N - 1 \simeq N$

Now that we have solved for Q_N , we can take the log according to Eqn. () $\Rightarrow lnQ_N = N lnV + ln \left(1 - \frac{N}{V} \frac{2\pi r_0^3}{3} N\right)$ As stated by the problem, we are considering the scenario when atomic volume × N << V/N & since atomic volume = $\frac{4\pi}{3}r_0^3$

$$\frac{N}{\sqrt{2\pi r_n^3}} N > << 1$$

Therefore we approximate the log as $ln(1-\frac{N^2}{\sqrt{3}}) \simeq -\frac{N^2}{\sqrt{3}} \frac{2\pi r_s^3}{3}$

Plugging all of our results into Eqn (1) we find that

$$\frac{P}{LT} = \frac{N}{V} + \frac{M^2}{V^2} \frac{STr^3}{3}$$
Or
$$PV = NET \left(1 + \frac{N}{V} \frac{2Tr^3}{3}\right)$$
To get this in the form of the problem
$$PV \left(1 + \frac{N}{V} \frac{2Tr^3}{3}\right)^{-1} \simeq PV \left(1 - \frac{N}{V} \frac{2Tr^3}{3}\right) = NET$$

$$\Rightarrow P(V - N \frac{2Tr^3}{3}) = NET$$

Session 6 Problem 3 Pathina 44
We know that fir a grand canonical ensemble, the probability of a state baring a given every Es à number of particles Nr is given by
$$P(N_r, E_s) = \frac{e^{\alpha N_r - \beta E_r}}{E_s} = \frac{2^N e^{-\beta E_s}}{Z(k, N_T)}$$
 $\beta = 1/kT$
If we just want the probability of a state baring Nr particles, then we must sum across all of the energy states
 $P(N) = \sum_{k=1}^{N} \frac{e^{-\beta E_s}}{Z(k, N_T)}$ function
 $P(N) = \sum_{k=1}^{N} \frac{e^{-\beta E_s}}{Z(k, N_T)}$ function
 $\overline{Z(k, N_T)}$ $\overline{Z(k, N_T)}$
We know that for a classical, ideal gas
 $Q_N(N_T) = \frac{1}{N_1} \sum_{i=1}^{N} \frac{e^{\beta E_s}}{(2\pi m_k T)^{2k}}$
Then this we can solve for the grand partition function
 $\overline{Z(k, N_T)} = \frac{1}{N_1} \sum_{i=1}^{N} \frac{2N e^{\beta E_s}}{(2\pi m_k T)^{2k}}$
Then this we can solve for the grand partition function
 $\overline{Z(k, N_T)} = \frac{1}{N_1} \sum_{i=1}^{N} \frac{2N e^{\beta E_s}}{(2\pi m_k T)^{2k}}$
 $= \frac{1}{N_1} \sum_{i=1}^{N} \frac{2N e^{\beta E_s}}{(2\pi m_k T)^{2k}}$ $X = \frac{2m e^{\beta E_s}}{1 + 2}$
 $= \frac{2}{2} \sum_{i=1}^{N} \frac{2N e^{\beta E_s}}{1 + 2} \sum_{i=1}^{N} \frac{2N e^{\beta E_s}}{1 + 2} \sum_{i=1}^{N} \frac{2m e^{\beta E_s}}{1 + 2} \sum_{i=1}^{N} \frac{2N e^{\beta$

We can use the grand partition function & partition function to re-express
the probability as
$$P(N) = \frac{gN}{N!e^{5}} = \frac{gN}{N!} e^{-\frac{g}{2}}$$
which is the
 $P(N) = \frac{gN}{N!e^{5}} = \frac{gN}{N!} e^{-\frac{g}{2}}$
which is the
form of a
 $P(N) = \frac{gN}{N!e^{5}} = \frac{gN}{N!} e^{-\frac{g}{2}}$
which is the
form of a
 $P(N) = \frac{gN}{N!e^{5}} = \frac{gN}{N!} e^{-\frac{g}{2}}$
which is the
 $P(N) = \frac{gN}{N!e^{5}} = \frac{gN}{N!} e^{-\frac{g}{2}}$
which is that
 $(\Delta N) = \sqrt{D^{2}} e^{-(N)^{2}}$
with
 $N = \sum N_{r} p(N_{r})$
 $N^{2} = \sum N_{r}^{2} p(N_{r})$
or
 $\overline{N} = \sum_{r,s} N_{r} e^{\frac{g}{R}(E_{s}-\mu N_{r})}$
 $\overline{N}^{2} = \sum_{r,s} N_{r}^{2} e^{\frac{g}{R}(E_{s}-\mu N_{r})}$
 $\overline{\Sigma} e^{\frac{g}{R}(E_{s}-\mu N_{r})}$
 $\overline{N}^{2} = \sum_{r,s} e^{\frac{g}{R}(E_{s}-\mu N_{r})}$
 $\overline{N}^{2} = \sum_{r,s} e^{\frac{g}{R}(E_{s}-\mu N_{r})}$
 $\overline{\Sigma} e^{-\frac{g}{R}(E_{s}-\mu N_{r})}$
 $\overline{\Sigma} e^{-\frac{g}{R}($