Problem Review Session 6
 PHYS 741

Zach Nasipak

March 19, 2018

Disclaimer: The problems below are not my own making but are taken from Pathria's Statistical Mechanics (PSM) and past qualifying exams from UNC (Qual).

Practice Problems

1. (Qual 2011 SM-5) A long vertical tube with a cross-section area A contains a mixture of n different ideal gases, each with the same number of particles N, but of different masses $m_{k}, k=1, \ldots, n$. Find a vertical position of the center of mass of this system in the presence of the Earth's gravity, assuming a constant altitude-independent free fall acceleration g.
2. (Qual 2012 SM-3) Consider a classical gas of N identical particles. The energy of the system is given by

$$
H=\sum_{i=1}^{N} \frac{p_{i}^{2}}{2 m}+\sum_{i<k} U_{i k}\left(\left|\vec{r}_{i}-\vec{r}_{k}\right|\right)
$$

In the dilute (atomic volume $\times N \ll V / N)$ and high temperature $(|U| \ll k T)$ approximation it can be shown that the partition function can be written as

$$
Z(T, V, N)=\frac{1}{N!}\left(\frac{1}{\lambda^{3}}\right)^{N} Q_{N}(V, T) \quad \text { where } \quad \lambda=\frac{h}{\sqrt{2 \pi m k T}}
$$

and the configurational integral $Q_{N}(V, T)$ is given by

$$
Q_{N}(V, T)=V^{N}+V^{N-2} \sum_{i<k} \int d^{3} r_{i} \int d^{3} r_{k}\left(e^{-U_{i k} / k T}-1\right)
$$

Assume the potential is given by the hard sphere potential

$$
U_{i k}\left(\left|\vec{r}_{i}-\vec{r}_{k}\right|\right)=\left\{\begin{array}{ll}
\infty & \left|\vec{r}_{i}-\vec{r}_{k}\right|<r_{0} \\
0 & \left|\vec{r}_{i}-\vec{r}_{k}\right| \geq r_{0}
\end{array},\right.
$$

where r_{0} is the radius of the sphere. Show that the equation of state is given by

$$
P\left(V-N \frac{2 \pi}{3} r_{0}^{3}\right)=N k T
$$

3. (PSM 4.4) The probability that a system in the grand canonical ensemble has exactly N particles is given by

$$
p(N)=\frac{z^{N} Q_{N}(V, T)}{\mathcal{Z}(z, V, T)}
$$

where $z=e^{\beta \mu}$ is the fugacity, $Q_{N}(V, T)$ is the partition function and $\mathcal{Z}(z, V, T)$ is the grand partition function. Verify this statement and show that in the case of a classical, ideal gas the distribution of particles among the members of a grand canonical ensemble is identically a Poisson distribution. Show that

$$
\overline{(\Delta N)^{2}}=k T\left(\frac{\partial \bar{N}}{\partial \mu}\right)_{T, V}
$$

where \bar{N} is the average number of particles. Calculate the root mean square fluctuation ΔN for this system from the formula above and from the Poisson distribution, and show that they are the same.

Additional Problem

4. (PSM 4.7) Consider a classical system of noninteracting, diatomic molecules enclosed in a box of volume V at temperature T. The Hamiltonian of a single molecule is given by

$$
H\left(\vec{r}_{1}, \vec{r}_{2}, \vec{p}_{1}, \vec{p}_{2}\right)=\frac{1}{2 m}\left(p_{1}^{2}+p_{2}^{2}\right)+\frac{K}{2}\left|\vec{r}_{1}-\vec{r}_{2}\right|^{2}
$$

where m and K are constants. Study the thermodynamics of this system, including the dependence of the quantity $\left.\langle | \vec{r}_{1}-\left.\vec{r}_{2}\right|^{2}\right\rangle$ on T.

Session 6 Problem 1 Qual 2011 SM-5
The center of mass for the entire mixtun is given by

$$
z_{C M}=\frac{\sum_{k=1}^{n} z_{k} m_{k}}{\sum_{k=1}^{n} m_{k}} \quad \begin{aligned}
& \text { where } z_{k} \text { is the average } \\
& \text { height of mixture } k
\end{aligned}
$$

Therefore we just weed to solve for z_{k}. This can la done from the canonical ensemble approach, where

$$
z_{k}=\frac{1}{Q_{1}^{k}} \int z e^{-\beta\left(P^{2} / 2 m_{k}+m_{k} g z\right)} \frac{d^{3} q d^{3} p}{h^{3}}
$$

where Q_{1}^{k} is the partition function of a singh paticle $w /$ mass m_{k}

$$
Q_{1}^{k}=\int \frac{d^{3} p d^{3} q}{n^{3}} e^{-\beta\left(P^{2} / 2 m_{k}+m_{k} g z\right)}
$$

The integrals over momenta space cancel. Additionally integrals oke all spatial coordinates besides the z-coordinate will cancel. This hares us with

$$
z_{k}=\int_{0}^{\infty} z e^{-\beta m g z} d z / \int_{0}^{\infty} e^{-\beta m g z} d z
$$

If we define $\alpha=\beta m g$ then

$$
\left.z_{k}=-\frac{\partial \ln I_{k}}{\partial \alpha} \quad w \right\rvert\, I_{k} \equiv \int_{0}^{\infty} e^{-\alpha z} d z=\frac{1}{\alpha}
$$

Therefore $z_{k}=1 / \alpha \&$ we can find the center of mass of the mixture

$$
\begin{aligned}
& z_{c M}=\frac{\sum_{k=1}^{n} m_{k} / m_{k} \beta g}{M} \\
& z_{c M}=\frac{n k_{B} T}{M g} \quad \text { where } M=\sum_{k=1}^{n} m_{k}, ~
\end{aligned}
$$

Essentially for this problem we are calculating the first vivial coefficient for a non-ideal reakly-interacting gas that is approximated by a hard-sphere potential.
We can determine the equation of state by vecalling that

$$
P=-\left(\frac{\partial A}{\partial V}\right)_{N, T} \& \quad A=-k T \ln Z
$$

where Z is the partition function given by the problem. Only the
Configuration function Q_{N} depends on V. configuration function Q_{N} depends on V

$$
\begin{equation*}
\Rightarrow \frac{P}{k T}=\left(\frac{\partial \ln Q_{N}}{\partial N}\right)_{N, T}=\frac{1}{Q_{N}}\left(\frac{\partial Q_{N}}{\partial V}\right)_{N T T} \tag{1}
\end{equation*}
$$

So now ... need to evaluate Q_{N}, which is given by

$$
Q_{N}=V^{N}+V^{N-2} \sum_{i<k} \int d^{3} r_{i} \int d^{3} r_{k}\left(e^{-\beta U_{i k}}-1\right)
$$

We can simplify this expression by defining the displacement vector $\vec{r}_{i k}=\vec{r}_{i}-\vec{r}_{k}$. Note that the Jacobian

$$
\begin{gathered}
\frac{\partial \vec{r}_{i k}}{\partial \vec{r}_{i}}=1 \Rightarrow \int d^{3} r_{i} \rightarrow \int d^{3} r_{i k} \\
\Rightarrow Q_{N}=V^{N}+V^{N-2} \sum_{i<k} \int d^{3} r_{k} \int d^{3} r_{i k}\left[e^{-\beta U_{i k}\left(r_{i k}\right)}-1\right]
\end{gathered}
$$

Notice that the integrand only depends on $r_{i k} \equiv\left|\vec{r}_{i k}\right|$ therefore we can immediately evaluate the other integral, which just gills us another volume term

$$
\Rightarrow Q_{N}=V^{N}+V^{N-1} \sum_{i<k} \int d^{3} r_{i k}\left(e^{-\beta \nu_{i k}}-1\right)
$$

Transforming to spherical coordinates, we see that this further simplifies to

$$
Q_{N}=V^{N}\left[1+\frac{4 \pi}{V} \int_{0}^{\infty} d r_{i k}\left(e^{-\beta v_{i k}}-1\right)\right] r_{i k}^{2}
$$

Considering the form of our potential, the integrand is only noy-zers for

$$
\begin{aligned}
& r_{i k}<r_{0} \\
& \Rightarrow Q_{N}=V^{N}\left[1-\frac{4 \pi}{V} \sum_{i<k} \int_{0}^{r_{0}} d r_{i k} r_{i k}^{2}\right] \quad \text { using } e^{-\beta U_{i k} \rightarrow 0} \text { for } r_{i k}<r_{0}, U_{i k}=\infty \\
&=V^{N}\left[1-\frac{4 \pi}{V} \sum_{i<k}\left(\frac{r_{0}^{3}}{3}\right)\right]
\end{aligned}
$$

Now ne just need to evaluate the sum, which is essentially counting the number of two -particle interactions that could occur. We have N partides, so if we choose a partich, then are (N-1) particles it can interact with. If re do this type of paining then we would count

$$
N(N-1) \text { paining s }
$$

jut this double counts the interaction between partich 1 \& partide 2 by also counting the interaction between particle $2 \&$ partidi 1. Thenfor we need to dinge by 2 to account for double counting. This gives us

$$
\begin{aligned}
Q_{N} & =V^{N}\left[1-\frac{4 \pi r_{0}^{3}}{3 V} \frac{N(N-1)}{2}\right] \\
& \simeq V^{N}\left[1-\frac{N^{2}}{V} \frac{2 \pi r_{0}^{3}}{3}\right] \text { using that } N \gg 1 \text { so } N-1 \simeq N
\end{aligned}
$$

Note that you can also evaluate the sum by rewriting it as

$$
\sum_{i<l}=\sum_{k=2}^{N} \sum_{i=1}^{k}(1)=\frac{N(N-1)}{2}
$$

Now that ne have solved for Q_{N}, we can take the log according to Eon. (1)

$$
\Rightarrow \ln Q_{N}=N \ln V+\ln \left(1-\frac{N}{V} \frac{2 \pi r_{3}^{3} N}{3}\right)
$$

As stated by the problem, we are considenng the scenario when atonic volume $\times N \ll V / N$ \& since atonic volume $\simeq \frac{4 \pi}{3} r_{0}^{3}$

$$
\frac{N}{V}\left(\frac{2 \pi r_{0}^{3}}{3} N\right) \ll 1
$$

Therefore ne approximate the log as $\ln \left(1-\frac{N^{2}}{V} \frac{\pi r_{0}^{3}}{3}\right) \simeq-\frac{N^{2}}{V} \frac{2 \pi r_{0}^{3}}{3}$

Plugging all of our results into Eqn (1) he find that

$$
\frac{P}{k T}=\frac{N}{V}+\frac{N^{2}}{V^{2}} \frac{2 \pi r^{3}}{3}
$$

Or

$$
P V=N k T\left(1+\frac{N}{V} \frac{2 \pi r_{0}^{3}}{3}\right)
$$

To get this in the form of the problem

$$
\begin{aligned}
& P V\left(1+\frac{N}{V} \frac{2 \pi r_{0}^{3}}{3}\right)^{-1} \simeq P V\left(1-\frac{N}{V} \frac{2 \pi r^{3}}{3}\right)=N k T \\
& \Rightarrow P\left(V-N \frac{2 \pi r_{0}^{3}}{3}\right)=N k T
\end{aligned}
$$

Session 6 Prided 3
Pathria 4.4
We know that for a grand canorrical ensemble, the probability of a state having a given energy E_{s} \& number of particles N_{r} is given by

$$
P\left(N_{r}, E_{s}\right)=\frac{e^{\alpha N_{r}-\beta E_{s}}}{\sum_{r, s} e^{\alpha N_{r}-\beta E_{s}}}=\frac{Z^{N} e^{-\beta E_{s}}}{Z\left(z_{1}, N_{1}\right)}
$$

$$
\begin{aligned}
& \beta \equiv 1 / k T \\
& \alpha \equiv \mu \beta \\
& Z \equiv \text { grand partition }
\end{aligned}
$$

If we just want the probability of a state having N_{r} partides, then
we must sum across all of the energy states we moist sum across all of the energy states

$$
\begin{aligned}
P(N) & =\frac{\sum_{s} z^{N} e^{-\beta E_{s}}}{Z(z, V, T)}=\frac{z^{N} \sum_{s} e^{-\beta E_{s}}}{7(z, V, T)} \text { sum is just partition } \\
& \Rightarrow p(N)=\frac{z^{N} Q_{N}(V T)}{Z(z, V, T)}
\end{aligned}
$$

We know that for a classical, ideal gas

$$
\begin{aligned}
Q_{N}(V, T) & =\frac{1}{N!h^{3 N}} \int e^{-\beta / 2 m} \sum_{i=1}^{N} p_{i}^{2} \prod_{i=1}^{N} d^{3} q_{i} d^{3} p_{i} \\
& =\frac{1}{N!}\left[\frac{V}{h^{3}}(2 \pi m k T)^{3 / 2}\right]^{N}
\end{aligned}
$$

From this ne can solve for the grand partition function

$$
\begin{aligned}
Z(z, V, T) & =\sum_{N=0}^{\infty} \frac{1}{N!}\left[\frac{z V}{h^{3}}(2 \pi m k T)^{3 / 2}\right]^{N} \\
& =\sum_{N=0}^{\infty} \frac{\xi^{N}}{N!} \xi_{i} \equiv z V \lambda^{3} ; \lambda \equiv \sqrt{\frac{2 \pi m k T}{h^{2}}} \\
& =e^{\xi}
\end{aligned}
$$

We can use the grand partition function \& partition function to re-express the probability as
which is the

$$
p(N)=\frac{\xi^{N}}{N!e^{q}}=\frac{\xi^{N} e^{-q}}{N!}
$$

form of a
Poisson distribution.
To find the root mean square fluctuations $\overline{\Delta N}$, recall that

$$
\overline{(\Delta N)}=\sqrt{\overline{N^{2}}-(N)^{2}}
$$

with

$$
\bar{N}=\sum_{r} N_{r} p\left(N_{r}\right) \quad \overline{N^{2}}=\sum_{r} N_{r}^{2} p\left(N_{r}\right)
$$

or

$$
\bar{N}=\frac{\sum_{r, s} N_{r} e^{-\beta\left(E_{s}-\mu N_{r}\right)}}{\sum_{r, s} e^{-\beta\left(E_{s}-\mu N_{r}\right)}} \quad \overline{N^{2}} \cdot \frac{\sum_{r_{1} s} N_{r}^{2} e^{-\beta\left(E_{s}-\mu N_{r}\right)}}{\sum_{r_{1} s} e^{-\beta\left(E_{s}-\mu N_{r}\right)}}
$$

Notice that $\left(\frac{\partial \bar{N}}{\partial \mu}\right)_{T, V}=\beta\left(\overline{N^{2}}-\bar{N}^{2}\right)$

$$
\begin{aligned}
\Rightarrow(\overline{\Delta N})^{2} & =k T\left(\frac{\partial \bar{N}}{\partial \mu}\right)_{T, V}=k T \sum N\left(\frac{\partial p(N)}{\partial \mu}\right)_{T, V} \\
& =\sum\left(\frac{N^{2}}{N!} \frac{d \xi}{d z} \frac{d z}{d \mu} e^{-\xi} \xi^{N-1}-\frac{N}{N!} \xi^{N} e^{-\xi} \frac{d \xi}{d z} \frac{d z}{d \mu}\right.
\end{aligned}
$$

w) $\frac{d \xi}{d z}=\frac{\xi}{z} \quad \frac{d z}{d \mu}=\frac{7}{k T} \Rightarrow \frac{d \xi}{d \mu}=\frac{\xi}{k T}$

$$
\Rightarrow \overline{(\Delta N)^{2}}=k T\left(\frac{\xi}{k T}\right) e^{-\xi}\left(\sum_{N=1}^{\infty} \frac{N}{(N-1)!} \xi^{N-1}-\sum_{N=1}^{\infty} \frac{1}{(N-1)!} \xi^{N}\right)
$$

We can shift the sums by defining $N \rightarrow n+1$

$$
\begin{aligned}
\Rightarrow(\overline{\Delta N})^{2} & =\xi e^{-\xi}\left(\xi \sum_{n=0}^{\infty} \frac{\xi^{n-1}}{(n-1)!}-\xi \sum_{n=0}^{\infty} \frac{\xi^{n}}{n!}+\sum_{n=0}^{\infty} \frac{\xi^{n}}{n!}\right) \\
& =\xi e^{-\xi}\left(\xi e^{\xi}-\xi e^{\xi}+e^{\xi}\right)=\xi
\end{aligned}
$$

$\Rightarrow \overline{\Delta N}=\sqrt{\xi} \quad$ Note that the variance of Poisson distribution is also given by $\sigma=\Delta N=\xi$, which match is what ne just calculated.

