Problem Review Session 5
 PHYS 741

Zach Nasipak

March 6, 2018

Disclaimer: The problems below are not my own making but are taken from Pathria's Statistical Mechanics (PSM) and past qualifying exams from UNC (Qual).

Practice Problems

1. (Qual 2015 SM-1) Consider an ideal gas in a one-dimensional channel of length L. The energy of the particle is given by $E=\left(p^{2} / 2 m\right)-\varepsilon_{0}$.
(a) Show, using the classical approach, that the partition function of one particle is given by

$$
Q_{1}(T, L)=\frac{L}{\lambda} e^{\varepsilon_{0} / k T} \quad \text { and } \quad \lambda=\frac{h}{\sqrt{2 \pi m k T}}
$$

(b) Calculate the chemical potential of this system of N indistinguishable particles at temperature T.

Reminder: $\int_{0}^{\infty} e^{-x^{2}} d x=\sqrt{\pi} / 2$.
2. (Qual 2012 SM-5) A cylinder of radius R and length L contains N molecules of mass m of an ideal gas at temperature T. The cylinder rotates about its axis with an angular velocity ω. Find a change in the free energy of the gas ΔA, as compared to that at rest.
3. (PSM 3.31) Study the statistical mechanics of a system (i.e. calculate the entropy, chemical potential, pressure, internal energy and heat capacities) of N "Fermi oscillators," which are characterized by only 2 eigenvalues, namely 0 and ε. (This is similar to Problem 6.3 in Huang only you are now doing it from canonical approach.)

Additional Problem

4. (PSM 3.18) Show that for a system in the canonical ensemble

$$
\left\langle(\Delta E)^{3}\right\rangle=k^{2}\left[T^{4}\left(\frac{\partial C_{V}}{\partial T}\right)_{V}+2 T^{3} C_{V}\right] .
$$

Verify that for an ideal gas

$$
\left\langle\left(\frac{\Delta E}{U}\right)^{2}\right\rangle=\frac{2}{3 N} \quad \text { and } \quad\left\langle\left(\frac{\Delta E}{U}\right)^{3}\right\rangle=\frac{8}{9 N^{2}}
$$

5. (PSM 3.26) The energy eigenvalues of an s-dimensional harmonic oscillator can be written as $\varepsilon_{j}=$ $(j+s / 2) \hbar \omega$.

Show that the j th energy level has a multiplicity of $(j+s-1)!/ j!(s-1)$!. Evaluate the partition function, and the major thermodynamic properties of a system of N such oscillators, and compare your results with a corresponding system of $s N$ one-dimensional oscillators. Show in particular that the chemical potential $\mu_{s}=s \mu_{1}$.

Session 5 Problem 1 Quail 2015 SM-1
a) In general, the partition for a single particle in $1-D$ is given by

$$
Q_{1}=\frac{1}{h} \int d p d q e^{-\beta H} \quad \text { where } H \text { is the Hamiltonian of }
$$

For this problem $H=p^{2} / 2 m-t_{0}$

$$
\begin{aligned}
\Rightarrow Q_{1} & =\frac{1}{h} \int_{0}^{L} d q \int_{0}^{\infty} d p e^{-\beta\left(\frac{p^{2}}{2 m}-\epsilon_{0}\right)} \\
& =\frac{L}{h} e^{\beta \epsilon_{0}} \int_{0}^{\infty} d p e^{-\beta p^{2} / 2 m} \\
& =\frac{L}{h} e^{\beta t_{0}} \frac{\Gamma(1 / 2)}{\sqrt{\beta / 2 m}}=\sqrt{\frac{2 m \pi k T}{h^{2}}} L e^{t_{0} / k T}
\end{aligned}
$$

$\left.\Rightarrow Q_{1}=\frac{L}{\lambda} e^{\epsilon_{0} / k T} \quad w \right\rvert\, \lambda=\sqrt{\frac{2 \pi m k T}{h^{2}}}$ as defined m the
b) The clerical potential is given lay the Maxwell relation

$$
\mu=\left(\frac{\partial A}{\partial N}\right)_{T, L}
$$

The Helmholtz free energy is related to the paction function by

$$
A=-k T \ln Q_{N} \quad \text { when } Q_{N} \text { is the partition function }
$$

For indistinguishable, Independent paticls

$$
\begin{gathered}
\qquad Q_{N}=\frac{1}{N!} Q_{1}^{N}=\frac{1}{N!}\left(\frac{L}{\lambda}\right)^{N} e^{\epsilon_{0} N / k T} \\
\Rightarrow \frac{A}{k T}=N \ln N-N-N \ln (L / \lambda)-N \epsilon_{0} / k T \text { approx: ln } N!\text { use Stirling's } N \ln N-N \\
\Rightarrow \mu=\left(\frac{\partial A}{\partial N}\right)_{L T T}=k T \ln \left(\frac{N \lambda}{1}\right)-\epsilon_{0}=\mu
\end{gathered}
$$

Session 5 Problem 2 Quail 2012 SM-5
There has been a lot of debate about what exactly the Hamiltonian is for the system. Would a gas even notice that the cylinder is spinning at first since the only way a gas molecule "knows the cylinder" is if it comes in contact $w /$ the cellinder way since its a hon-interacting ideal gas. So we will assume the gas has had sufficient tie to know that the cylinder is spinning. To be honest, I still haven't convinced which Hamiltoman is correct, but it should han the form

$$
H=\frac{p^{2}}{2 m} \pm \frac{1}{2} m \omega^{2} r^{2}
$$

I'll assume $(-)$ for this problem, but the calculations are virtually the same if you use

+ refers to centripetal potential
- refers to centrifugal potential
\sum basically is there a real central potential or is there just some inertial force?
a positive potential. I use the negative sign because it makers intuitive sense that the gas minimizes its energy by clustering alow the outer edges of the containa as compared to the center of the cylinder.
The change in free every is given by

$$
\Delta A=-k T\left(\ln Q_{N}^{\text {not }}-\ln Q_{N}^{\text {non-rott}}\right)=-k T \ln \frac{Q_{N}^{\text {not }}}{Q_{N}^{\text {non-ntt }}}
$$

$Q_{N}^{\text {rot }} \equiv$ votational partition function ; $Q_{N}^{w i n-m t} \equiv$ non-votating partition function. We can calculate the partition functions from the single particle partition function

$$
Q_{1}^{r o t}(\omega)=\int \frac{d^{3} p d^{3} q}{h^{3}} e^{-\beta\left(P^{2} / 2 m-\frac{1}{2} m \omega^{2} r^{2}\right)} ; Q_{1}^{40 n-\omega t}=Q_{1}^{n+}(\omega=0)
$$

with $Q_{N}=\left(Q_{1}\right)^{N} / N!$
These functions only differ by their integrations over r, thenfore all other
integrals cancel. integrals cancel.

$$
\begin{aligned}
& \Rightarrow \Delta A=-N k T \ln \frac{Q_{1}^{r t}}{Q_{1}^{n a-r r t}}=-N k T \ln \left[\int_{0}^{R} e^{\beta_{m} \omega^{2} r^{2} / 2} r d r / \int_{0}^{R} r d r\right] \\
&=-N k T \ln \left[\frac{2}{\beta_{m \omega^{2} R^{2}} \beta_{0}^{2} \omega^{2 R^{2} / 2}} e^{x} d x\right]=x \equiv \frac{\beta m \omega^{2} r^{2}}{2} ; d x=\beta_{m \omega^{2}} r d r \\
& \Rightarrow \Delta A=-N k T \ln \left[\frac{1}{\lambda}\left(e^{\lambda}-1\right)\right] \lambda \equiv \frac{\beta_{m} \omega^{2} R^{2}}{2}
\end{aligned}
$$

Session 5 Problem 3 Pathria 3.32
First we calculate the partition function for a single particle, which is given by

$$
Q_{1}=\sum_{i=1}^{2} e^{-\beta t_{i}}=1+e^{-\beta \varepsilon} \quad \beta \equiv 1 / k T
$$

Since we are dealing with N identical, distinguishable particles, the full partition function is given by

$$
Q_{N}=\left[Q_{1}\right]^{N}=\left(1+e^{-\beta \varepsilon}\right)^{N}
$$

We relate the partition function of statistical mechanics to thermodynamics through the Helmholtz potentine

$$
A=-k T \ln Q_{N}=-N k T \ln \left(1+e^{-\beta \varepsilon}\right)
$$

For this problem we want to calculate $S, \mu, P, U, C_{V}, \& C_{p}$ which are related by Maxwell relations

$$
\begin{aligned}
& S=-\left(\frac{\partial A}{\partial T}\right)_{N, V} ; \mu=\left(\frac{\partial A}{\partial N}\right)_{V, T} ; P=-\left(\frac{\partial A}{\partial V}\right)_{V, T} ; U=A+T S \\
\Rightarrow & S=N k \ln \left(1+e^{-\beta \varepsilon}\right)+\frac{N \varepsilon e^{-\beta \varepsilon}}{T\left(1+e^{-\beta \varepsilon}\right)}=N k\left[\ln \left(1+e^{-\beta \varepsilon}\right)+\frac{\beta}{e^{\beta \varepsilon}+1}\right]=S \\
\Rightarrow & \mu=-k T \ln \left(1+e^{-\beta \varepsilon}\right) \\
\Rightarrow & P=0 \quad \therefore \quad C_{P}=C_{V} \\
\Rightarrow & U=\frac{N \varepsilon}{e^{\beta \varepsilon}+1} \quad-\frac{N \varepsilon^{2} e^{\beta \varepsilon}}{\left(1+e^{\beta \varepsilon}\right)} \frac{\partial \beta}{\partial T}
\end{aligned}
$$

Using U we can calculate $C_{p} \pm C_{V}$ from

$$
C_{p}=C_{v}=\left(\frac{\partial U}{\partial T}\right)_{N, V}=\frac{N_{k}(\beta \varepsilon)^{2} e^{\beta \varepsilon}}{\left(1+e^{\beta_{\varepsilon}}\right)^{2}}
$$

