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Disclaimer: The problems below are not my own making but are taken from Pathria’s Statistical Mechanics
(PSM).

Practice Problems

1. (PSM 1.8) Consider a system of quasiparticles whose energy eigenvalues are given by

" = nh⌫; n = 0, 1, 2, . . . .

Obtain an asymptotic expression (N � 1, E/N � 1) for the number of microstates ⌦ of this system
for given number N of quasiparticles and a given total energy E. Determine the temperature T of the
system as a function of E/N and h⌫, and examine the situation for which E/Nh⌫ � 1.

2. (PSM 2.7)

(a) Derive an asymptotic expression (N � 1, E/N � 1) for the number of ways in which a given
energy E can be distributed among a set of N one-dimensional harmonic oscillators, with the
energy eigenvalues of the oscillators being (n+ 1/2)h̄!;n = 0, 1, 2, . . ..

(b) Derive the corresponding expression for the “volume” of the relevant region of phase space of this
system.

(c) Establish the correspondence between the two results of (a) and (b), showing that the conversion
factor !0 is precisely h

N . (For those reading Huang’s Statistical Mechanics, !0 essentially refers to
the volume in phase space occupied by a single microstate.)

3. (PSM 2.8) Show that
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where V3N is the volume of a 3N -dimensional hypersphere of radius R. Using this results, compute the
“volume” of the relevant region of the phase space of an extreme relativistic gas (" = pc) of N particles
moving in three-dimensions. Hence, derive expressions for the various thermodynamic properties of this
system (energy, entropy, chemical potential, equation of state, and � = CP /CV ).

Hint: Begin with the definition of the n-dimensional hypersphere volume
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to find the integral form of V3N . Then evaluate the integral by using the fact that V3N = C3NR
3N ,

where C3N is a constant of proportionality and use the integral

Z 1

0
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r
2
dr = 2,

to solve for C3N .

Additional Problem

If you want to try another problem similar to PSM 2.8

1. (PSM 2.9) Solve the integral Z
· · ·

Z

0
3NP
i=1

|xi|R

(dx1dx2 · · · dx3N ),

and use it to determine the “volume” of the relevant region of the phase space of an extreme relativistic
gas (" = pc) of 3N particles moving in one-dimension. Determine, as well, the number of ways of
distributing a given energy E among this system of particles and show that (asymptotically) !0 = h

3N .

Pathria Notation

Useful Pathria notation

• ⌦ = ⌦(N,E, V ) refers to the number of microstates that have energy E, the number of particles N ,
and occupy a volume V .

• � = �(N,E, V ;�) refers to the number of microstates that have energy E  E
0  E +�, the number

of particles N , and occupy a volume V .

• ! refers to volume of phase space confined to the region E  H(pi, qi)  E +�. Huang refers to this
as �(E). A useful relation is that � = !/!0, where !0 is described in the problem above.

• ⌃ refers to the volume of phase space confined to the region E  H(pi, qi), just like in Huang.

• g(x) refers to the density of states of a variable x. x can refer to energy, momentum, position, etc.
Therefore g(E) in Pathria is essentially the same as !(E) in Huang.
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For this system ,
the total energy E of N particles is given by

£ Ej  = E when Ej
 = njhv describes the energy of particle i

j=l

If  we
" redefine

"

our  energy so that  it has an integer value
,

then we

can treat this as a combination 's problem , when we  must find the number
of weak compositions that describe how to divide E* across N particles ,

when

E*  
= FInj = Eg

when me see that E* must be

an integer because nj  Only takes  on

integer values nj =  0
, 1,2 ,

. . .

The number of weak compositions  of  integer  n using k integers is

( ntnh; ' ) ⇒ r= ( E* Inf ' ) = E*LtND !

( N - D ! E* !

To find an asymptotic  expression ,
we can take the log and apply Stirling 's

formula , assuming E
,

N > > 1 :  Ann ! =  nlnn - n

⇒ lure ( E*tN)lnLE*+N) - Wlnn - E*lhE*
when 1 also assume W -1 IN & E* + N - I # E*tN

⇒ lure E*µ( It HE* ) + Nln ( t + EFN)

R = ( I + ×
-  ' )×N ( 1 +  × )N w / X = E-

NW

To determine the temperature dependence ,
we  use the flaxwell relation

t.to#mv=tat8F)nn=ntnuFakenr
= keen ( Ita

' )
⇒ T  

= hv = T

⇒ n¥s ±kY¥⇒ = In

Where we assume E- > > 1 asstated in the problem ⇒ ln ( HX ) a X
WW for X< < 1

Side : We fond that E= NKT
,

which according to the equi partition theorem describes  a

System  W/ just 2 degrees  of freedom ,
like  a ID SHO .

This  makes  sense  since IDSHO has E- (NHTDHV
.
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A) This problem  will begin with a similar procedure to Problem 1

Redefine
"

energy to take  on  integer  values

E*±n§,his
= FI ( EI - ⇒ = E - ¥

Again  we must count the number of  weak compositions that divide E*

among N groups
:

where N > > 1

R= (ETEN,
. i ) =

( E *

IN ) = CE*±N)!
: .

when
N ! E* !

Taking the log he can  use Stirling 's approximation : lnn ! I  nlnn - h

since N
,

E* > > 1

⇒ lnR⇐ ( E*tN)ln # + N ) - Nlnn - E*lnE*

This problem asks for an  asymptotic  express ( ie . when E/Ns > 1)

⇒ lure + knew + ¥ )[ln¥* + lull + Nzh¥5f - nlnn

- (Ew - Nz )[lnEw +lull - NEED

⇒ lure
War

Ethw - Nlnn + N using ln(l±NI¥F±NI¥
: D= (¥nw)N where we neglect the last N term because E > SN

b) Next we consider the phase space approach ,
where we look for the

shellof phase Space enclosed by the energysurfacesdefined by Hlq ,p)=E & Eta
where E is the energy of the system & H is the system 's Hamiltonian

ie . ~WIIthat
,
Men,a9d%  If ,

.de?ednpfa.pf.denadnpFtientYtyanwg
is  called

For this system the Hamiltonian  is defined by

H  = §
,

PEN
+  myth = Eaten +  XI

" lxemwai



⇒

Ba
fmhfnfdnpdnx - (mtufnfdnpdnx = (mtw)N[Vw( Feta )+Vw(fmE)]

Epitxi  E Zmttta ) Epitx ,? EZMCE )

where ✓ n¢R) is the volume of  an h - dimensional hyper sphere  with radius R .

The volume  is given by
Vn ( R ) = IT

"2
R

"

¥+1
⇒

w~=
(

mtwfw
[ ¥EtdDN. (my)N[2tE_x]N Recall Mnt D=  n !

Mht  D 1 part D

Consider that E > > A & E > > N ⇒ ( 1 + E⇒N= I + NIT
⇒ oetfa⇒N[i+w¥

. if = why TETE
"

A
N !

Or
assuming

N - It N & applying Stirling's approximation of n
! ± NE "

T = (2µtw±)N
where he disregard the 4 term & en term

,

since these will be negligible when we take the

log of @
.

C) Our result from part (a) js related to  our result from part (b)
by r= oleo

We can find the normalization To then by inverting this equation
and using our answers from the previous parts

⇒ Too = WYR =

(zh=t)N
= hn = go as expected
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We can begin with the volume of an n - dimensional hypersphere with radius

r
,

which Can be described by the multidimensional integral

Vn ( R ) = f DNX

01,4
,
xp E 122

NOW if  we have a 3N - dimensional space ,
then every tuple of 3 xi

'
s

Can be related to a tuple of spherical Coordinates ( rj , Oj , lej ) where

j= 1,2 ,
.  . .

,
N . Now  our  volume  integral is  only restricted for the N rj

Coordinates :

Van = f. .  . f firstly. ( §
"

dy )N ( § dose )N
OE §, rj  ER

=

( 4 it § rzdr

)NH4tDNf¥#
rjtdrj  = f dvsn

OEE rjsr
We want to solve this integral by using the known  identity of

§ Errzdr = 2

⇒ 2. ( for rzdr )
"

;.fi#.e.xgfFIrjIfNIrjdri
.

We See that the product term is related to volumeelement defined above

t.IT rjhdrj  =

dV3NL4t)N

We Can find an alternate form for Vzw by using the ahsatz of

Vzw ~ 123W ⇒ Vzw = Czw 123N ↳ N is some

Constant

⇒ dV3w = 3N ↳ n
123N

' '



Integral representation
of M( 3N )

Therefore he can rewrite  our integral as -
a

2N = § ER Yake
"

DR =

3Y#§n_ foe ' R3mdr

= 31 M ( 3N )
(6) N

( 3N

⇒ C3N =

fgn⇒÷
,

or V3n= (8*23)N

( 3N ) !

an extremely relativistic gas in 3D
W

E  
= E Pi c Kwhere pi

 = IFit > o )
it  I

f. we can identify that this problem relates to the derivation  in the

first half  of the problem by taking R → EK & ri  → pi

To find the "

volume " of the relevant  region of phase space we take the

difference  of the hyperspheere volumes  W / radii I Eta ) & EK respectively ,

⇒ WII
,§! ,

.MY#ad3n9=A3wlE*tV3nCE5ffd3nq
xN for  volume ✓

* Note that I am Considering these particles as distinguishable
,

which we  will see In *
later sections gives  us the Gibbs paradox

⇒ D= # ( 8¥)
"

[ LE+a)
3N

- en ]
Recall that  he  are  considering the case  where E > > A

,
N & N > > I :  he  use

n ! = an ein '

when we neglect a

⇒ w~ 
= (foggy)Ne3wE3N3N=# = ( 8zt¥J(F)

3Ne3n
bk Lkcn

, EN &

assume N - 1 = N

But what he want to know are thermodynamic quantities . The entropy
is given by

S= klnp = kln FEW = Nkln [8tV( In )3 ] + 3Nk= S



We can then invert  our entropy equation to  solve for E

⇒ E=3Nhc(8TV)y3 @
%wk - 1

We find temperature using the Maxwell relation

Te ( off)nµ = the E  ⇒ E  =3 NKT

The specific heats an given by Cv = ( 8¥)nµ & CP=T( ¥ )n,p
⇒ Cv = 3Nk

But we need to rewrite S in terms of P & T to solve for Cp
Pressure  is given by the Maxwell relation

P = T ( ⇒
me

=

N¥ =P :  ideal gas law still holds

⇒ S = Nk ln ( ICBC )3 ) + 3Wk
g f  is some function that

We See that S = 4 Nklht + f- ( P
,

N ) doest depend on T

⇒ Cp = T(g⇒ = 4Wh = Cp

Trenton z=C# ¥
which is exactly what  we  expect for

a relativistic gas

We Can also determine the chemical potential using

µ=
- IT of )q=t§-3kt

⇒ µN= 3NkT - TS = E - TS as  expected


