Problem Review Session 4 PHYS 741

Zach Nasipak

February 26, 2018

Disclaimer: The problems below are not my own making but are taken from Pathria's <u>Statistical Mechanics</u> (PSM).

Practice Problems

1. (PSM 1.8) Consider a system of quasiparticles whose energy eigenvalues are given by

$$\varepsilon = nh\nu;$$
 $n = 0, 1, 2, \dots$

Obtain an asymptotic expression $(N \gg 1, E/N \gg 1)$ for the number of microstates Ω of this system for given number N of quasiparticles and a given total energy E. Determine the temperature T of the system as a function of E/N and $h\nu$, and examine the situation for which $E/Nh\nu \gg 1$.

- 2. (PSM 2.7)
 - (a) Derive an asymptotic expression $(N \gg 1, E/N \gg 1)$ for the number of ways in which a given energy E can be distributed among a set of N one-dimensional harmonic oscillators, with the energy eigenvalues of the oscillators being $(n + 1/2)\hbar\omega$; n = 0, 1, 2, ...
 - (b) Derive the corresponding expression for the "volume" of the relevant region of phase space of this system.
 - (c) Establish the correspondence between the two results of (a) and (b), showing that the conversion factor ω_0 is precisely h^N . (For those reading Huang's <u>Statistical Mechanics</u>, ω_0 essentially refers to the volume in phase space occupied by a single microstate.)
- 3. (**PSM 2.8**) Show that

$$V_{3N} = \int \cdots \int \prod_{i=1}^{N} \left(4\pi r_i^2 dr_i\right) = \frac{(8\pi R^3)^N}{(3N)!},$$
$$0 \le \sum_{i=1}^{N} r_i \le R$$

where V_{3N} is the volume of a 3N-dimensional hypersphere of radius R. Using this results, compute the "volume" of the relevant region of the phase space of an extreme relativistic gas ($\varepsilon = pc$) of N particles moving in three-dimensions. Hence, derive expressions for the various thermodynamic properties of this system (energy, entropy, chemical potential, equation of state, and $\gamma = C_P/C_V$).

Hint: Begin with the definition of the n-dimensional hypersphere volume

$$V_n = \int \cdots \int \prod_{\substack{0 \le \sum_{i=1}^n x_i^2 \le R^2}} \prod_{i=1}^n (dx_i)$$

,

to find the integral form of V_{3N} . Then evaluate the integral by using the fact that $V_{3N} = C_{3N}R^{3N}$, where C_{3N} is a constant of proportionality and use the integral

$$\int_0^\infty e^{-r} r^2 dr = 2,$$

to solve for C_{3N} .

Additional Problem

If you want to try another problem similar to PSM 2.8

1. (PSM 2.9) Solve the integral

$$\int \cdots \int (dx_1 dx_2 \cdots dx_{3N}),$$

$$\leq \sum_{i=1}^{3N} |x_i| \leq R$$

0

and use it to determine the "volume" of the relevant region of the phase space of an extreme relativistic gas ($\varepsilon = pc$) of 3N particles moving in one-dimension. Determine, as well, the number of ways of distributing a given energy E among this system of particles and show that (asymptotically) $\omega_0 = h^{3N}$.

Pathria Notation

Useful Pathria notation

- $\Omega = \Omega(N, E, V)$ refers to the number of microstates that have energy E, the number of particles N, and occupy a volume V.
- $\Gamma = \Gamma(N, E, V; \Delta)$ refers to the number of microstates that have energy $E \leq E' \leq E + \Delta$, the number of particles N, and occupy a volume V.
- ω refers to volume of phase space confined to the region $E \leq H(p_i, q_i) \leq E + \Delta$. Huang refers to this as $\Gamma(E)$. A useful relation is that $\Gamma = \omega/\omega_0$, where ω_0 is described in the problem above.
- Σ refers to the volume of phase space confined to the region $E \leq H(p_i, q_i)$, just like in Huang.
- g(x) refers to the density of states of a variable x. x can refer to energy, momentum, position, etc. Therefore g(E) in Pathria is essentially the same as $\omega(E)$ in Huang.