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Disclaimer: The problems below are not my own making but are taken from Pathria’s Statistical Mechanics
(PSM).

Practice Problems

1. (PSM 1.8) Consider a system of quasiparticles whose energy eigenvalues are given by

ε = nhν; n = 0, 1, 2, . . . .

Obtain an asymptotic expression (N � 1, E/N � 1) for the number of microstates Ω of this system
for given number N of quasiparticles and a given total energy E. Determine the temperature T of the
system as a function of E/N and hν, and examine the situation for which E/Nhν � 1.

2. (PSM 2.7)

(a) Derive an asymptotic expression (N � 1, E/N � 1) for the number of ways in which a given
energy E can be distributed among a set of N one-dimensional harmonic oscillators, with the
energy eigenvalues of the oscillators being (n+ 1/2)h̄ω;n = 0, 1, 2, . . ..

(b) Derive the corresponding expression for the “volume” of the relevant region of phase space of this
system.

(c) Establish the correspondence between the two results of (a) and (b), showing that the conversion
factor ω0 is precisely hN . (For those reading Huang’s Statistical Mechanics, ω0 essentially refers to
the volume in phase space occupied by a single microstate.)

3. (PSM 2.8) Show that
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where V3N is the volume of a 3N -dimensional hypersphere of radius R. Using this results, compute the
“volume” of the relevant region of the phase space of an extreme relativistic gas (ε = pc) of N particles
moving in three-dimensions. Hence, derive expressions for the various thermodynamic properties of this
system (energy, entropy, chemical potential, equation of state, and γ = CP /CV ).

Hint: Begin with the definition of the n-dimensional hypersphere volume
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to find the integral form of V3N . Then evaluate the integral by using the fact that V3N = C3NR
3N ,

where C3N is a constant of proportionality and use the integral∫ ∞
0

e−rr2dr = 2,

to solve for C3N .

Additional Problem

If you want to try another problem similar to PSM 2.8

1. (PSM 2.9) Solve the integral ∫
· · ·
∫

0≤
3N∑
i=1
|xi|≤R

(dx1dx2 · · · dx3N ),

and use it to determine the “volume” of the relevant region of the phase space of an extreme relativistic
gas (ε = pc) of 3N particles moving in one-dimension. Determine, as well, the number of ways of
distributing a given energy E among this system of particles and show that (asymptotically) ω0 = h3N .

Pathria Notation

Useful Pathria notation

• Ω = Ω(N,E, V ) refers to the number of microstates that have energy E, the number of particles N ,
and occupy a volume V .

• Γ = Γ(N,E, V ; ∆) refers to the number of microstates that have energy E ≤ E′ ≤ E + ∆, the number
of particles N , and occupy a volume V .

• ω refers to volume of phase space confined to the region E ≤ H(pi, qi) ≤ E + ∆. Huang refers to this
as Γ(E). A useful relation is that Γ = ω/ω0, where ω0 is described in the problem above.

• Σ refers to the volume of phase space confined to the region E ≤ H(pi, qi), just like in Huang.

• g(x) refers to the density of states of a variable x. x can refer to energy, momentum, position, etc.
Therefore g(E) in Pathria is essentially the same as ω(E) in Huang.
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