Problem Review Session 3
 PHYS 741

Zach Nasipak

March 6, 2018

Disclaimer: The problems below are not my own making but are taken from Princeton Problems in Physics (PPP) and past qualifying exams from UNC (Qual).

Past Qualifying Exam Problems

1. (Qual 2015 SM-2) Consider a white dwarf star where the number of electrons is N, the mass of the star is $M=2 N m_{p}$ (where m_{p} is the mass of the proton), and the volume of the star is V. The pressure of an ideal Fermi gas is given by

$$
P=\frac{8 \pi}{3 h^{3}} \int_{0}^{\infty} \frac{1}{e^{(\epsilon-\mu) / k T}+1}\left(p \frac{\partial \epsilon}{\partial p}\right) p^{2} d p
$$

where μ is the chemical potential and ϵ is the relativistic kinetic energy given by

$$
\epsilon=m_{e} c^{2}\left\{\left[1+\left(\frac{p}{m_{e} c}\right)^{2}\right]^{1 / 2}-1\right\}
$$

where m_{e} is the mass of the electron and c is the speed of light. It can be shown that the Fermi momentum is given by $p_{F}=\frac{3 N}{}_{8 \pi V}{ }^{1 / 3} h$, where h is the Planck constant. Show that in the $T \rightarrow 0$ limit, the radius of the star R is given by the equation

$$
\frac{8 \pi m_{e}^{4} c^{5}}{3 h^{3}} \int_{0}^{\theta_{F}} \sinh ^{4} \theta d \theta=\frac{\alpha}{4 \pi} \frac{G M^{2}}{R^{4}}, \quad \text { where } \quad m_{e} c \sinh \theta_{F}=p_{F}
$$

Here $\alpha \simeq 1$ is a known constant, and G is the gravitational constant.
2. (Qual 2014 SM-1) Consider a system of N classical distinguishable harmonic oscillators where the Hamiltonian is given by

$$
H=\sum_{i=1}^{N}\left(\frac{p_{i}^{2}}{2 m}+\frac{1}{2} m \omega^{2} q_{i}^{2}\right) .
$$

(a) Calculate $\Sigma(N, E)$, the total number of microstates with energy less than or equal to E.
(b) Based on the calculated $\Sigma(N, E)$, show that the entropy is given by

$$
S(N, E)=N k\left[1+\ln \left(\frac{E}{N \hbar \omega}\right)\right] .
$$

Practice Problems

3. (PPP 4.1) Consider a system of $N \gg 1$ non-interacting particles in which the energy of each particle can assume two and only two distinct values: 0 and $E(E>0)$. Denote by n_{0} and n_{1} the occupation numbers of the energy levels 0 and E, respectively. The fixed total energy of the system is U.
(a) Find the entropy of the system
(b) Find the temperature as a function of U. For what range of values of n_{0} is $T<0$?
(c) In which direction does heat flow when a system of negative temperature is brought into thermal contact with a system of positive temperature? Why?
4. (PPP 4.7) A wire of length l and mass per unit length μ is fixed at both ends and tightened to a tension τ. What is the root mean square fluctuation, in classical statistics, of the midpoint of the wire when it is in equilibrium with a heat bath at temperature T ? A useful series is

$$
\sum_{m=0}^{\infty}(2 m+1)^{-2}=\frac{\pi^{2}}{8}
$$

