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Disclaimer: The problems below are not my own making but are taken from A Guide to Physics Problems: Part 2

(GPP2).

Practice Problems

1. (GPP2 4.11 Liquid-Solid-Liquid) A small amount of water of mass m = 50 g in a container at

temperature T = 273 K is placed inside a vacuum chamber which is evacuated rapidly. As a result, part

of the water freezes and becomes ice and the rest becomes vapor.

(a) What amount of water initially transforms into ice? The latent heat of fusion (ice to water) qi = 80

cal/g, and the latent heat of vaporization (water to vapor) qv = 600 cal/g.

(b) A piece of heated metal alloy of massM = 325 g and original volume V = 48 cm
3
is placed inside the

calorimeter together with the ice obtained as a result of the experiment in (a). The density of metal

at T = 273 K is ⇢0 = 6.8 g/cm
3
. The thermal capacity is C = 0.12 cal/g K, and the coe�cient of

linear expansion ↵ = 1.1⇥ 10
�5

K
�1

. How much ice will have melted when equilibrium is reached?

2. (GPP2 4.20 Adiabatic Atmosphere) The lower 10� 15 km of the atmosphere, the troposphere, is

often in a convective steady state with constant entropy, not constant temperature. (PV �
is independent

of the altitude, where � ⌘ CR/CV .)

(a) Find the change of temperature in this model with altitude dT/dz.

(b) Estimate dT/dz in K/km. Consider the average diatomic molecule of air with molar mass µ = 29

g/mol.

3. (GPP2 4.29 Heat Extraction)

(a) A body of mass M has a temperature-independent specific heat C. If the body is heated reversibly

from a temperature Ti to a temperature Tf , what is the change in its entropy?

(b) Two such bodies are initially at temperatures of 100 K and 400 K. A reversible engine is used to

extract heat with the hotter body as a source and the cooler body as a sink. What is the maximum

amount of heat the can be extracted in units of MC?

(c) The specific heat of water is C = 4.2 J/g K, and its density is 1 g/cm
3
. Calculate the maximum

useful work that can be extracted, using as a source 10
3
m

3
of water at 100

�
C and a lake of

temperature 10
�
C as a sink.

4. (GPP2 4.13 Maxwell Boltzmann Averages)

(a) Write the properly normalized Maxwell-Boltzmann distribution f(v) for finding particles of mass m
with magnitude of velocity in the interval [v, v + dv] at a temperature T . (Hint: f(E) ⇠ e�E/kT

.)

(b) What is the most likely speed at temperature T?

(c) What is the average speed?
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(d) What is the average square speed?

5. (GPP2 4.35 Poisson Distribution in Ideal Gases) Consider a monatomic ideal gas of total N 0

molecules in a volume V 0
. Show that the probability PN for the number N of molecules contained in a

small element of V is given by the Poisson distribution

PN =
e�hNihNiN

N !

Another Rocket Problem

1. (GPP2 4.19 Rocket in Drag) A rocket has an e↵ective frontal area A and blasts o↵ with a constant

acceleration a straight up from the surface of the Earth.

(a) Use either dimensional analysis or an elementary derivation to find out how the atmospheric drag

on the rocket should vary as some power(s) of the area A, the rocket velocity v, and the atmospheric

density ⇢ (assuming that we are in the region of high Reynolds numbers).

(b) Assume that the atmosphere is isothermal with temperature T . Derive the variation of the atmo-

spheric density ⇢ with height z. Assume that the gravitational acceleration g is a constant and that

the density at sea level is ⇢0.

(c) Find the height h0 at which the drag on the rocket is at a maximum.
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Session 2 Problem 1 GPPZ 4.11 liquid - Solid - Liquid

÷) So but 'sfirst take aStep back & consider what is happening
during this process . Why does the ice  evaporate & freeze ? when you
subject most solutions to  a vacuum you  would expect them to boil &

evaporate ,
since a Vacuum is  essentially a Pto system and most

compounds exist in gas phase when P  a 0 at standard temperature
ranges .

However it takes energy or heat to  evaporate the liquid . Homier
,

because the vacuum chamber was  evacuated rapidly , we can  approximate
that the total energy of the system is conserved . Therefore as the water

evaporates ,
the remaining liquid loses energy . The remaining liquid

must either cool or freeze . Under the right conditions we can reach

a state when the heat lost to evaporation (vaporization) & freezing
I fusion ) balance  one another and the liquid is completely connoted

to  a solrd & vapor .

This is exactly the scenario for this problem ,
therefore the total

latent heat of fusion must equal the total latent heat  of
vaporization

⇒ Miqi
 = Mv9v

We  can solve for the mass of the ice by considering that the total
mass of the Water should be conserved

: . Mv = M - Mi

⇒ mi ( qitqv ) = m9v

mi  = m#=m9it9v1+9 ilgv

mi  = 7,3dg = 44g

b) Now  we hair created a new System when he  an worried about the heat

exchange between the metal alloy & the ice

qm M = 9 imi
Where qm is the Specific heat gained from the metal & transferred to the ice

& fhi is the amount of ice that has melted when the substances reach eguilibni



But how does 9mm ,
ie .

the heat  transferred from the metal
,

affect the

metal ? When the metal comes in contact  wl the ice
,

we expect  it to

quickly cool to the temperature of the ice ( 273 K ) .
While the metal

will not  undergo  a phase transition like the water
,

we expect that

the volume / density of the material will be altered .

The rate c which the metal will reach 1=273 k is related to the
thermal capacity C

i. e .

C = qm 14T

While the change in volume is related to the coefficient  of thermal expansion
a

i.  e. a *= t(¥)p
⇒ at Pom¥)p

⇒ ln%
.

= dv AT assuming &v=  const .

We want to solve for th
; ;consequently he must solvefor qm

qm
= CAT  

=

Gylnvko
=

Eabn Vtm

However we are not given a v in this problem ,
instead we are given

the linear expansion
L = th (0¥)p when L is the length along a

single direction

Assuming that Vt L3
, we can relate 4to a

⇒ ← t.to#ys3ICotDpe3a
This Leads to the final result  of

Fni  =

Mzatg
,

bn VµI ± 63 g

Sidenotei Other solutions use the relation

To = 1 + ×
✓

IT  ← this  comes from  assuming
HRTI < < 1 & expanding the exp

as a Taylor Series . Gives same answer .



)

Session 2 Problem 2 GPPZ 4.20
- - Adiabatic Atmosphere

A) To make things easier we will begin by assuming that the troposphere
is governed by the ideal gas  equation  of state

PV =  NRT  ⇒ T  
= PVNR

This should be a reasonable assumption since the atmosphere is
relatively

dilute . But whatdo we actually Mean by the volume V & number
of  moles n ? It might be more illustrative to think that for
n moles  of gas , they occupy a pressure P ,

Volume V
,

& temperature
T @ a certain  attitude Z .

! . for a chosen value n= n
'

P  =P ( z
,

h
' ) T  

= IT an
' ) V=V( 2- in

' )

⇒ data = as# pv ) = ntr [ vaatf + Paez ]
Hydrostatic equilibrium ( since the atmosphere is in  a steady state )
gives us

did = -

pg
when p is the density of  our n

'
moles of atmosphere @ altitude Z

,
such

that

p= njmn

where we assume the atmospheric molecules can be described by a mean

molecular might µ .

To solve for dV/dZ
,

we use our knowledge that the troposphere experiences
convective heating & therefore our  n

' moles of  atmosphere behan Adiabatic ally

⇒ Pvt const  or P%V= const  = &

⇒
Pad¥=

-

ftp.kdfz.tyaft: date #( # aft = (F) fag =

daze



b) Now  it's just  a matter  of determining F. Recall that the equipartition theorem

tells Us that the internal energy of  an ideal gas is given by

U=EnRfTwhere f  is the degrees of freedom for the system . We also know that

Cv = ( d¥)v & 454 n R for
imdeae

gas

⇒ y = Cp/q= 1 + n%✓ = 1 + 4f  = f¥
A diatomic molecule has 5 degrees  of freedom : Z rotational & 3 translational

⇒ z= 715

so adf.lt?#2!.3aeggmmIIn*xnoI=-aEmt=TE
This  is  only -9off by a factor  of 2

from the actual temperature gradient of the

troposphere which  is remarkable for Such a simple
model



Session2Pwbkm3_ GPPZ 4.29 Heat Extraction

a) As we have discussed in previous problems
MC = dQ_ since C is temperature independent

IT

Because this is a reversible process ,
he also have the equality

DQ = Tds

⇒ as = MCDI
T

Integrating both sides we find AS = Mclntfk
,

b) The heat extracted by the system is givenby the difference  of  initial & final
internal energies of the reservoirs

,
which is given by the heat

Qext = Qf - Qi
= ( Q at Qc ) - ( Q

#f
+ Qc

,
f)

when QA = heat  of hot reservoir
, Qce heat  of cold reservoir & Qi ,f represents heat

in the final state of the engine . Defining Tap & I ,f  as the final temperatures  of

the hot & Cold reservoirs respectively ,
he have

Qextt MC ( It + Tc ) - MC ( It ,f
+ To

,
f)

= [ TH + I - THE
" Mmc

- Tee
's 4mi MC

where he have Used our  result from part (a) & represent the change in entropy of
the hot & Cold reservoirs by LISA & Asc respectively . Now , we know that

AS = ASH + Llsc 20

so let's rewrite ASH = AS - Asc

⇒ [ It + Te - THE
'%c

- Tae
's due

-Tceasclmifmc
: . We see that Qext  is  maximized  when 45=0

,
otherwise the The

's the

term grows
⇒ as it

= Mcln (t¥# a - Ase = Mcln ( II )
⇒ TH To = TH

,
ftaf



So  our  expression for the extracted heat becomes

Qext = ( TH + Tc - THE
,

- It
,
f) MC

Now 1 have not  assumed a  value for TH
, f  or Tgf ,

but  he expect that
TH ,f

= I ,f minimizes Our  expression ,  which we  can show by minimizing the

equation above

da¥÷=o=mc ( III - 1 )
⇒ TH

,

}  = TH I or It ,f
= Ftc

⇒ Tc
, f

= TH
,

f  = THE

! .  he finally have that

Qext = ( TH + Tc - 2 ITF ) MC = 100 MC . �1�

C) We  want to maximize  work
, therefore  we want to maximize  efficiency And a

Carnot engine  operating @ It & To will achieve this exact  result :

n=a÷s= i - F÷

⇒ W= ( l - II ) Qa↳s

But
.

. .
 our  realistic sustem cannot  actually operate  as a true

Carnot engine . Why?
'

While the cold reservoir  is large and its temperature
Can be considered roughly constant

,

the same is not true for  our hot

reservoir . A  damot  engine begins  w| an  isothermal expansion  at temperature
TH . Thisabsorbs heat from the not  reservoir ,

therefore  causing the reservoir

temperature to slightly drop . As a  result
, once the engine goes through a

full cycle ,
the hot reservoir  is no longer @ temperature Tt due to

dqabs = - dQµ = - MCDT

where - DQH is the heat lost by the hot  msevoir & IT is  its temperaturechange
.

So let's  reimagine this  as  a series  of Carnot  engines  wl each engine  in the

Series having a  new hot  reservoir temperature . While the lake also gains
heat & therefore  its temperature  will also  increase ;However thistiperatun

Change 8T  
= SQ/µ( when ML is the mass  of the lake & SQ  is the

heat  absorbed by the lake
.

Since MLC > ) SQ
,

we  will neglect the temperature
change Of the lake @ each  step in the cycle & will  only account for  it  at the and .



Therefore the Work done by each cycle with TH = T

⇒ DWLTS =  yLT)dQabs= - ( 1- It ) MCDT

Or  

integrating
all the way down to Tµ=Tc + LI

,
when this  is the final

temperature  of the two reservoirs
.

TH

⇒ W+ot= f ( I - ¥)dTTcttl=MC[Tµ- ( Ita ) - Tc bn ( Italia ) ]
= MC[Tµ - Tc - Ibn THH

, ] using lnlltx ) ±  X

W = 2.8×10
"

J

The alternative  approach is to follow the process of part ( b ) by identifying
that maximum Work is  extracted when 45=0 so  initial & final

entropies must be the Same .

⇒ S = MC lnTµ + Me Clute = ( M + ML ) Clu( It a )

=(m+mdc[enI
+ § ]

⇒ a =

mN+tµIlnt¥

The total Work can then be  calculated by comparing the initial &
final energies since QQ  = 0 from 45=0 .

⇒ W = Ui - Uf = MCTA  + MLCI - ( Mt MDC ( Ita )

W
+  

OFMC ( TH - I - To ln # Itc )



Session 2 Problem 4 GPPZ 4.13
- Maxwell Boltzmann

(a) AveragesAS We've seen before
,

Maxwell - Boltzmann distributions

have the form

f  ~ e- Elkt

In this Case
,

he  will rewrite E . tzmv2

⇒

ftp.cemvyzet

Where 1=fd3vf(y

Therefore  he just  need to  normalize the distribution solve For C

a

⇒ 1 = C fd3✓Emv%hT
- a

± LHC § dv vzjmthkt

This  Is  a good chance to  explain how  one  solves this  integral .
Define

a

I  
= fdx e-

ax2

on⇒ I = § § dxdy e-
al 't 5) = § § drdq  rear

- a - &  0  O

= 2T § dr  rear = I§ du  e-
a d"I=A{

ardr

a

= I

a

⇒ I  
= fit , dat÷=f¥a & §Eaidu= II

a

So  we have

1 = 4 'T CFt14fk⇒% or C= ( yet )3k

⇒

ftp.4tvfzm#jkeFE

when
a

1= fdvflv )
0



(b) The most likely Speed is given by the maximum  of fw )
.

So first
we find the Zeros by taking the derivative

⇒ dat = 2 fly - 2dg far ) = 0

⇒ v
2  

= 2k¥ ; .
V= §T

m

(c) The average velocity is given by
< V > = § dvv fcvj = 4iC§dv✓3em%kt

Setting u=  MVYZKT so du  =  mvdv/kT or V2= Zuktlm
a

⇒ < v > =2(kmI)24tCfduaeau infusea¥⇐ but we

0 convenience

=

-8T(kmt)2Cada[ § due
- au ]

= - 8t( ¥5 Cada Ha )
= 81¥ ( k¥5

But  at 7 & C = ( Yzitkt )%

⇒ a > = 8*C(kmI)2 or < v >=f8±t
Tm

(d) For  a quick result
,

one  can tecau the Equipartition function
,

for which

< E > = ZKT  ⇒ ( ±mv2 > =3=kT

⇒ < vz > = 3kI
M

Alternatively ,
one  must  evaluate the integral 4tCfdvV2fCv)



Session 2 Problem 5 GPPZ 4.35

-
Poisson Distribution  in Ideal Gases

The probability of finding 1- particle in a volume V out of  an  ideal gas  of
N

'
particles  in  volume V ' Is given by W

,
= VN '

.

Therefore the probability of  not finding a particle  in V 5
,

= tw
, ,

This means

that the Probability of finding N molecules  in  volume ✓ & N '  
- N molecules  not

in V
⇒ PimYn@wioiw.nntmK.Mt⇒

w

When the pre factor takes  into  account  all of the ways  we  can  arrange the

N
'

particles between the W particles  in V & N '
- N particles  in the rest  of

V 1
.

A useful identity is that
,

for N
'

> > N

NI
= N' ( N '  

. 1) ( N
'  

- 2) . . . ( N
'

- Ntt ) = NN since each term  is

( N '
- N ) ! = N '

N

⇒ p~-nj÷(⇒n(t⇒n
'

= sy÷( +<n⇒
"

by recognizing that < N ) = N'VN '
. Additionally

N
'

ln ( l -

' ¥ ) =  
- < n >

So we can approximate the second factor by e-
< N >

⇒ p= <

NSN
- ( N >

NT e


