Problem Review Session 2 PHYS 741

Zach Nasipak

February 9, 2018

Disclaimer: The problems below are not my own making but are taken from A Guide to Physics Problems: Part 2 (GPP2).

Practice Problems

1. (GPP2 4.11 Liquid-Solid-Liquid) A small amount of water of mass $m=50 \mathrm{~g}$ in a container at temperature $T=273 \mathrm{~K}$ is placed inside a vacuum chamber which is evacuated rapidly. As a result, part of the water freezes and becomes ice and the rest becomes vapor.
(a) What amount of water initially transforms into ice? The latent heat of fusion (ice to water) $q_{i}=80$ $\mathrm{cal} / \mathrm{g}$, and the latent heat of vaporization (water to vapor) $q_{v}=600 \mathrm{cal} / \mathrm{g}$.
(b) A piece of heated metal alloy of mass $M=325 \mathrm{~g}$ and original volume $V=48 \mathrm{~cm}^{3}$ is placed inside the calorimeter together with the ice obtained as a result of the experiment in (a). The density of metal at $T=273 \mathrm{~K}$ is $\rho_{0}=6.8 \mathrm{~g} / \mathrm{cm}^{3}$. The thermal capacity is $C=0.12 \mathrm{cal} / \mathrm{g} \mathrm{K}$, and the coefficient of linear expansion $\alpha=1.1 \times 10^{-5} \mathrm{~K}^{-1}$. How much ice will have melted when equilibrium is reached?
2. (GPP2 4.20 Adiabatic Atmosphere) The lower $10-15 \mathrm{~km}$ of the atmosphere, the troposphere, is often in a convective steady state with constant entropy, not constant temperature. ($P V^{\gamma}$ is independent of the altitude, where $\gamma \equiv C_{R} / C_{V}$.)
(a) Find the change of temperature in this model with altitude $d T / d z$.
(b) Estimate $d T / d z$ in K / km. Consider the average diatomic molecule of air with molar mass $\mu=29$ $\mathrm{g} / \mathrm{mol}$.

3. (GPP2 4.29 Heat Extraction)

(a) A body of mass M has a temperature-independent specific heat C. If the body is heated reversibly from a temperature T_{i} to a temperature T_{f}, what is the change in its entropy?
(b) Two such bodies are initially at temperatures of 100 K and 400 K . A reversible engine is used to extract heat with the hotter body as a source and the cooler body as a sink. What is the maximum amount of heat the can be extracted in units of $M C$?
(c) The specific heat of water is $C=4.2 \mathrm{~J} / \mathrm{g} \mathrm{K}$, and its density is $1 \mathrm{~g} / \mathrm{cm}^{3}$. Calculate the maximum useful work that can be extracted, using as a source $10^{3} \mathrm{~m}^{3}$ of water at $100^{\circ} \mathrm{C}$ and a lake of temperature $10^{\circ} \mathrm{C}$ as a sink.

4. (GPP2 4.13 Maxwell Boltzmann Averages)

(a) Write the properly normalized Maxwell-Boltzmann distribution $f(v)$ for finding particles of mass m with magnitude of velocity in the interval $[v, v+d v]$ at a temperature T. (Hint: $f(E) \sim e^{-E / k T}$.)
(b) What is the most likely speed at temperature T?
(c) What is the average speed?
(d) What is the average square speed?
5. (GPP2 4.35 Poisson Distribution in Ideal Gases) Consider a monatomic ideal gas of total N^{\prime} molecules in a volume V^{\prime}. Show that the probability P_{N} for the number N of molecules contained in a small element of V is given by the Poisson distribution

$$
P_{N}=\frac{e^{-\langle N\rangle}\langle N\rangle^{N}}{N!}
$$

Another Rocket Problem

1. (GPP2 4.19 Rocket in Drag) A rocket has an effective frontal area A and blasts off with a constant acceleration a straight up from the surface of the Earth.
(a) Use either dimensional analysis or an elementary derivation to find out how the atmospheric drag on the rocket should vary as some power(s) of the area A, the rocket velocity v, and the atmospheric density ρ (assuming that we are in the region of high Reynolds numbers).
(b) Assume that the atmosphere is isothermal with temperature T. Derive the variation of the atmospheric density ρ with height z. Assume that the gravitational acceleration g is a constant and that the density at sea level is ρ_{0}.
(c) Find the height h_{0} at which the drag on the rocket is at a maximum.

Session 2 Problem 1 GPP2 4.11 Liqud-Solid-Liquid
a) So let's first take a step back \& consider what is happening during this process. Whey does the ice evaporate \& freeze? When you subject most solutions to a vacuum you would expect them to boil k evaporate, since a vacuum is essentially a $P \simeq 0$ system and most compounds exist in gas phase when $P \approx O$ at standard temperature ranges.
However it takes energy or heat to evaporate the liquid. However, because the vacuum chamber was evacuated rapidly, we can approximate that the total energy of the system is conserved. Thunfore as the water evaporates, the remaining liquid loses energy. The remaining liquid must either cool or freeze. Under the right conditions we can reach a state where the heat lost to evaporation (vaporization) i freezing (fusion) balance one another and the liquid is completely converted to a solid \& vapor.
This is exactly the scenario for this problem, thenfore the total latent heat of fusion must equal the total latent heat of vaporization

$$
\Rightarrow m_{i} q_{i}=m_{v} q_{r}
$$

We can solve for the mass of the ice by considering that the total mass of the water should be conserved

$$
\begin{aligned}
& \therefore m_{v}=m-m_{i} \\
& \Rightarrow m_{i}\left(q_{i}+q_{v}\right)=m q_{v} \\
& m_{i}=\frac{m q_{v}}{q_{i}+q_{v}}=\frac{m}{1+q_{i} q_{v}} \\
& m_{i}=\frac{750}{17} g \simeq 44 g
\end{aligned}
$$

b) Now we han created a new system when we are worried about the heat exchange between the metal alloy $\&$ the ice

$$
q_{m} M=q_{i} \tilde{m}_{i}
$$

where q_{m} is the specific heat gained from the metal transferred to the ice \& \hat{m}_{i} is the amount of ice that has melted when the substances reach equilibric

But how does $q_{m} M$, ie. the heat in nsferredfum the metal, affect the metal? When the metal comes in contact $w /$ the ice, re expect it to quickly cool to the temperature of the ice (273 K). While the metal will not undergo a phase transition ike the water, we expect that the volume/density of the material will be altered.
The rate e which the metal will reach $T=273 \mathrm{~K}$ is related to the thermal capacity C

$$
\text { ie. } C=q_{m} / \Delta T
$$

while the change in volume is related to the coefficient of thermal expansion α_{v}

$$
\begin{aligned}
& \text { ie. } \alpha_{V}=\frac{1}{V}\left(\frac{\partial V}{\partial T}\right)_{P} \\
& \Rightarrow \alpha_{V}=\left(\frac{\partial \ln V}{\partial T}\right)_{P} \\
& \Rightarrow \ln V / V_{0}=\alpha_{V} \Delta T \text { assuming } \alpha_{V} \approx \text { const. }
\end{aligned}
$$

We want to solve for \tilde{m}_{i}; consequently we most solve for q_{m}

$$
q_{m}=C \Delta T=\frac{C}{\alpha_{V}} \ln \frac{V}{V_{0}}=\frac{C}{\alpha_{V}} \ln \frac{V \rho_{0}}{M}
$$

However we are not given α_{v} in this problem, instead we are given
the linear expansion the linear expansion

$$
\alpha=\frac{1}{L}\left(\frac{\partial L}{\partial T}\right)_{p} \text { where } L \text { is the length along a }
$$

Assuming that $V \simeq L^{3}$, we can relate α_{v} to α

$$
\Rightarrow \alpha_{V}=\frac{1}{L^{3}}\left(\frac{\partial L^{3}}{\partial T}\right)_{p}=\frac{3 L^{2}}{L^{3}}\left(\frac{\partial L}{\partial T}\right)_{p}=3 \alpha
$$

This leads to the final result of

$$
\tilde{m}_{i}=\frac{M C}{3 \alpha q_{i}} \ln \frac{V \rho_{0}}{M} \simeq 63 \mathrm{~g}
$$

Side note: other solutions use the relation

$$
\begin{array}{r}
\frac{V}{V_{0}}=1+\alpha_{v} \Delta T \leftarrow \begin{array}{l}
\text { this comes from assuming }
\end{array} \\
\begin{array}{l}
\left|\alpha_{r} T\right| \ll 1 \text { \& expanding the exp } \\
\text { as a Taylor series. Gives same answer. }
\end{array}
\end{array}
$$

Session 2 Problem 2
Adiabatic Atmosphere
a) To make things easier we will begin by assuming that the troposphere is governed by the ideal gas equation of state

$$
P V=n R T \Rightarrow T=\frac{P V}{n R}
$$

This should be a reasonable assumption since the atmosphere is relaticly dilute. But what do we actually mean by the volume V \& number of moles n ? It might be more illusfraticu to think that for n moles of gas, the occupy a pressure P, volume V, \& temperature T Q a certain altitude z.
\therefore for a chosen value $n=n^{\prime}$

$$
\begin{aligned}
& P=P\left(z, n^{\prime}\right) \quad T=T\left(z, n^{\prime}\right) \quad V=V\left(z, n^{\prime}\right) \\
\Rightarrow & \frac{d T}{d z}=\frac{1}{n^{\prime} R} \frac{d}{d z}(P V)=\frac{1}{n^{\prime} R}\left[V \frac{d P}{d z}+P \frac{d V}{d z}\right]
\end{aligned}
$$

Hydrostatic equilibrium (since the atmosphere is in a steady state) gives us

$$
\frac{d p}{d z}=-p q
$$

when p is the density of our n^{\prime} moles of atmosphen C altitude Z, such
that that

$$
p \equiv \frac{n^{\prime} \mu}{v}
$$

where we assume the atmospheric molecules can be described by a mean molecular weight μ.
To solve for $d V / d z$, we use our knowledge that the troposphere experichas convective heating \& thenfare our n^{\prime} moles of atmosphere behan adiabatically

$$
\begin{aligned}
& \Rightarrow P V^{r}=\text { const or } P^{1 / r} V=\text { canst } \equiv \alpha \\
& \Rightarrow P \frac{d V}{d z}=-\frac{\alpha}{\gamma} P^{-1 / r} \frac{d P}{d z}=\frac{-V}{\gamma} \frac{d P}{d z} \\
\therefore \quad \frac{d T}{d z} & =\frac{V}{n^{\prime} R}\left(\frac{\gamma-1}{\gamma}\right) \frac{d P}{d z}=\left(\frac{1-\gamma}{\gamma}\right) \frac{\mu}{R} g=\frac{d T}{d z}
\end{aligned}
$$

b) Now it's just a matter of determining r. Recall that the equipartition theorem tells us that the internal energy of an ideal gas is given by

$$
U=\frac{1}{2} n R f T
$$

where f is the degrees of freedom for the system. We also know that

$$
\begin{aligned}
& C_{V}=\left(\frac{\partial U}{\partial T}\right)_{V} \& C_{P}-C_{V}=n R \text { for an ideal gas } \\
\Rightarrow \gamma= & C_{p} / C_{V}=1+n R / C_{V}=1+2 / f=\frac{f+2}{f}
\end{aligned}
$$

A diatonic molecule has 5 degrees of freedom: 2 rotational \& 3 translational

$$
\Rightarrow \gamma=7 / 5
$$

So $\frac{d T}{d z}=\left(\frac{1-7 / 5}{7 / 5}\right) \frac{29 \mathrm{~g} / \mathrm{mas1} \cdot 9.8 \mathrm{~m} / \mathrm{s}}{8.3 \times 10^{3} \mathrm{gmm}^{2} \mathrm{~s}^{-2} \mathrm{~K}^{-1} \text { not }} \times \frac{1000 \mathrm{~m}}{\mathrm{~km}}=-\frac{9.8 \mathrm{~K}}{\mathrm{~km}}=\frac{d T}{d z}$

$$
\begin{aligned}
& \text { This is only } \\
& \text { a factor of } 2
\end{aligned}
$$

off by a factor of 2
from the actual temperature gradient of the troposphere which is remarkable for such a simple model

Session 2 Problem 3 GPP2 4.29 Heat Extraction
a) As we have discussed in previous problems
$M C=\frac{d Q}{d T}$ since C is temperature independent
Because this is a reversible process, we also have the equality

$$
\Rightarrow \begin{aligned}
& d Q=T d S \\
& \Rightarrow \quad d S=M C \frac{d T}{T}
\end{aligned}
$$

Integrating both sides we find $\Delta S=M C \ln ^{T_{f}} / T_{i}$
b) The heat extracted by the system is given by the difference of initial \& final internal energies of the reservoirs, which is given by the heat

$$
\begin{aligned}
Q_{e x t} & =Q_{f}-Q_{i} \\
& =\left(Q_{H}+Q_{C}\right)-\left(Q_{H, f}+Q_{c, f}\right)
\end{aligned}
$$

when $Q_{H}=$ heat of hot resevir, Q_{c} = heat of cold reservoir \& $Q_{i, f}$ represents heat in the final state of the engine. Defining $T_{H, f} \& T_{C, f}$ as the final temperatures of the hot \& cold resevoirs respectively, we have

$$
\begin{aligned}
Q_{\text {ext }} & =M C\left(T_{H}+T_{C}\right)-M C\left(T_{H, f}+T_{C, f}\right) \\
& =\left[T_{H}+T_{C}-T_{H} e^{\Delta S_{H / M C}}-T_{C} e^{\Delta S_{C / M C}}\right] M C
\end{aligned}
$$

where ne have used our result from part (a) \& represent the change in entropy of the hot \& cold reservoirs by $\Delta S_{H} \& \Delta S_{c}$ respectively. Now, we know that

$$
\Delta S=\Delta S_{H}+\Delta S_{C} \geq 0
$$

So let's rewrite $\Delta S_{H}=\Delta S-\Delta S_{C}$

$$
\Rightarrow\left[T_{H}+T_{C}-T_{H} e^{\Delta S / M C}-T_{H} e^{-\Delta S_{c} / M C}-T_{C} e^{\Delta S_{C} / M C}\right] M C
$$

\therefore We see that $Q_{\text {ext }}$ is maximized when $\Delta S=0$, otherwise the $T_{H e} \Delta S / M c$ term grows

$$
\begin{aligned}
& \Rightarrow \Delta S_{H}=M C \ln \left(\frac{T_{f 1, f}}{T_{H}}\right)=-\Delta S_{C}=M C \ln \left(\frac{T_{C}}{T_{C, f}}\right) \\
& \quad \Rightarrow T_{H} T_{C}=T_{H, f} T_{C, f}
\end{aligned}
$$

So our expression for the extracted heat becomes

$$
Q_{\text {ext }}=\left(T_{H}+T_{C}-\frac{T_{H} T_{C}}{T_{H, f}}-T_{H, f}\right) M C
$$

Now I have not assumed a value for $T_{H, f}$ or $T_{c, f}$, but we expect that $T_{1, f}=T_{C, F}$ minimizes our expression, which ne can show by minimizing the equation above

$$
\begin{aligned}
& \frac{d Q}{d T_{H, f}}=0=\mu C\left(\frac{T_{H} T_{C}}{T_{H, f}^{2}}-1\right) \\
& \Rightarrow T_{H, f}^{2}=T_{H} T_{C} \text { or } T_{H, f}=\sqrt{T_{H} T_{C}} \\
& \quad \Rightarrow T_{C, f}=T_{H, f}=\sqrt{T_{H} T_{C}}
\end{aligned}
$$

\therefore ne finally have that

$$
Q_{\text {ext }}=\left(T_{H}+T_{C}-2 \sqrt{T_{H} T_{C}}\right) M C=100 M C \cdot V
$$

C) We wont to maximize work, thenfore we want to maximize efformuy and a Carnot engine operating \& $T_{+t} \& T_{c}$ will achieve this exact result:

$$
\begin{aligned}
& \eta=\frac{W}{Q_{a b s}}=1-\frac{T_{c}}{T_{H}} \\
& \Rightarrow W=\left(1-\frac{T_{C}}{T_{H}}\right) Q_{a b s}
\end{aligned}
$$

But... our realistic system cannot actually operate as a true Carnot engine. Why? While the cold resevoir is large and its temperature can be considered roughing constant, the same is not true for our hot resevoir. A Carnot engine begins w/ an isothermal expansion at temperature T_{4}. This absorbs heat from the hot reservoir, therefore causing the resevoir temperature to slightly drop. As a result, once the engine goes through a full cycle, the hot resevoir is no longer e temperature $T_{H} d m$ to

$$
d Q_{a b s}=-d Q_{H}=-\mu C d T
$$

where $-d Q_{H}$ is the heat lost by the hot resevoir \& AT is its temperatiue change.
So let's reimagine this as a series of Carnot engines w/ each engine in the series having a now hot reservoir temperature. While the lake also gains heat \& thentom its temperature will also increase; However thus temperature change $\delta T=\delta Q / M_{L} C$ where M_{L} is the mass of the lake $\& \delta Q$ is the heat absorbed by the lake. Since $M_{L} C \gg Q$, we will neglect the tenperatun change of the lake 8 each step in the cycle \& will only account for it at the end.

Therefore the work done by each cycle with $T_{H}=T$

$$
\Rightarrow d W(T)=\eta(T) d Q_{a b s}=-\left(1-\frac{T_{c}}{T}\right) M C d T
$$

Or integrating all the way down to $T_{H}=T_{C}+\Delta$, when this is the final temperature of the tho reservoirs.

$$
\begin{aligned}
\Rightarrow W_{\text {tot }} & =\int_{T_{c^{+}} \Delta}^{T_{H}}\left(1-\frac{T_{C}}{T}\right) d T \\
& =M^{c}\left[T_{H}-\left(T_{C}+\Delta\right)-T_{C} \ln \left(T_{C}+\Delta / T_{H}\right)\right] \\
& =M C\left[T_{H}-T_{C}-T_{c} \ln T_{H} / T_{C}\right] \quad \text { using } \ln (1+x) \simeq x \\
W & =2.8 \times 10^{\prime \prime} \mathrm{J}
\end{aligned}
$$

The alternative approach is to follow the process of part (b) by identifying that maximum work is extracted when $\Delta S=0$ so initial \& final entropies must be the same.

$$
\begin{aligned}
& \Rightarrow S=M C \ln T_{H}+M_{L} C \ln T_{C}=\left(M+M_{L}\right) C \ln \left(T_{C}+\Delta\right) \\
& \simeq\left(M+M_{L}\right) C\left[\ln T_{C}+\frac{\Delta}{T_{C}}\right] \\
& \Rightarrow \Delta=\frac{M}{M+M_{L}} T_{C} \ln \frac{T_{H}}{T_{C}}
\end{aligned}
$$

The total work can then be calculated by comparing the initial \& Final energies since $\Delta Q=0$ from $\Delta S=0$.

$$
\begin{aligned}
\Rightarrow & W=U_{i}-U_{f}=M C T_{H}+M_{L} C T_{c}-\left(M+M_{L}\right) C\left(T_{c}+\Delta\right) \\
& W_{\text {tot }}
\end{aligned}=M C\left(T_{H}-T_{C}-T_{c} \ln T_{H} / T_{C}\right)
$$

Session 2 Problem 4
(a)

As we 're seen before, Maxuell-Boltzmann distributions have the form

$$
f \sim e^{-E / k T}
$$

In this case, we will rewrite $E=\frac{1}{2} m v^{2}$

$$
\Rightarrow \tilde{f}(v)=C e^{-m v / 2 k T}
$$

Therefore ne just need to normalize the distribution solve for C

$$
\begin{aligned}
\rightarrow 1 & =C \int_{-\infty}^{\infty} d^{3} v e^{-m v^{2} / 2 k T} \\
& =4 \pi C \int_{0}^{\infty} d v v^{2} e^{-m v^{2} / 2 k T}
\end{aligned}
$$

This is a good chance to explain how one solves this integral. Define

$$
\begin{aligned}
I & =\int_{\infty}^{\infty} d x e^{-a x^{2}} \\
\Rightarrow I^{2} & =\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} d x d y e^{-a\left(x^{2}+y^{2}\right)}=\int_{0}^{\infty} \int_{0}^{2 \pi} d r d \theta r e^{-a r^{2}} \\
& =2 \pi \int_{0}^{\infty} d r r e^{-a r^{2}}=\frac{\pi}{a} \int_{0}^{\infty} d u e^{-u} \quad u=a r^{2} \\
& =\frac{\pi}{a} \\
\Rightarrow I & =\sqrt{\frac{\pi}{a}}, \frac{d I}{d a}=\sqrt{\frac{\pi}{4 a^{3}}} \quad \& \int_{0}^{\infty} e^{-a u^{2}} d u=\frac{1}{2} I
\end{aligned}
$$

So ne have

$$
\begin{aligned}
& 1= 4 \pi C \sqrt{\pi} / 4\left(\frac{2 k T}{m}\right)^{3 / 2} \quad \text { or } \quad C=\left(\frac{m}{2 \pi k T}\right)^{3 / 2} \\
& \Rightarrow f(v)=4 \pi v^{2}\left(\frac{m}{2 \pi k T}\right)^{3 / 2} e^{-\frac{m v^{2}}{2 k T}} \quad \text { where } \quad 1=\int_{0}^{\infty} d v f(v)
\end{aligned}
$$

(b) The most likely speed is given by the maximum of $f(v)$. So first ne find the zeros by taking the derivative

$$
\begin{aligned}
\Rightarrow \frac{d f}{d v} & =2 \frac{f(v)}{v}-\frac{2 v m}{2 k T} f(v)=0 \\
& \Rightarrow v^{2}=\frac{2 k T}{m} \quad \therefore v=\sqrt{\frac{2 k T}{m}}
\end{aligned}
$$

(c) The average velocity is given by

$$
\langle v\rangle=\int_{0}^{\infty} d v v f(v)=4 \pi C \int_{0}^{\infty} d v v^{3} e^{-m v^{2} / 2 k T}
$$

Setting $u=m v^{2} / 2 k T$ so $d u=m v d v / k T$ or $v^{2}=2 u k T / m$

$$
\begin{aligned}
\Rightarrow\langle v\rangle & =2\left(\frac{k T}{m}\right)^{2} 4 \pi C \int_{0}^{\infty} d u u e^{-a u} \quad \begin{array}{l}
\text { where } \\
\text { introduce } \\
\text { co }
\end{array} \\
& =-8 \pi\left(\frac{k T}{m}\right)^{2} C \frac{d}{d a}\left[\int_{0}^{\infty} d u e^{-a u}\right] \\
& =-8 \pi\left(\frac{k T}{m}\right)^{2} C \frac{d}{d a}\left(\frac{1}{a}\right)=\frac{8 \pi C}{a^{2}}\left(\frac{k T}{m}\right)^{2}
\end{aligned}
$$

$$
\text { where } a=1 \text {, but we }
$$

introduce it for
convenience

But $a=1 \& C=(m / 2 \pi k T)^{3 / 2}$

$$
\Rightarrow\langle v\rangle=8 \pi C\left(\frac{k T}{m}\right)^{2} \text { or }\left\langle\left\rangle=\sqrt{\frac{8 k T}{\pi m}}\right.\right.
$$

(d) For a quick result, one can recall the equipartition function, for which

$$
\begin{aligned}
& \langle E\rangle=\frac{3}{2} k T \Rightarrow\left\langle\frac{1}{2} m v^{2}\right\rangle=\frac{3}{2} k T \\
& \Rightarrow\left\langle v^{2}\right\rangle=\frac{3 k T}{m}
\end{aligned}
$$

Alternatively, one must evaluate the integral $\quad 4 \pi C \int d v v^{2} f(v)$

Session 2 Problem 5
GPP2 4.35
Poisson Distribution in I deal Gases
The probability of finding 1-partide in a volume V out of an ideal gas of N^{\prime} particles in volume V^{\prime} is given by $\omega_{1}=V / V^{\prime}$.
Therefore the probability of not finding a particle in $V \quad \bar{\omega}_{1}=1-\omega_{1}$. This means that the probability of finding N molecules in volume V \& $N^{\prime}-N$ molecules not in V

$$
\Rightarrow P=\frac{N^{\prime}!}{N^{\prime}\left(N^{\prime}-N\right)!} \omega_{1}^{N} \bar{\omega}_{1}^{N^{\prime}-N}=\frac{N^{\prime}!}{\left.N^{\prime}!N^{\prime}-N\right)!}\left(\frac{v}{v^{\prime}}\right)^{N}\left(1-\frac{v}{v^{\prime}}\right)^{N^{\prime}-N}
$$

when the prefactor takes into account all of the ways we can arrange the N^{\prime} particles between the N particle in $V \& N^{\prime}-N$ particles in the rest of V^{\prime}.
A useful identity is that, for $N^{\prime} \gg N$

$$
\begin{aligned}
& \frac{N^{\prime}!}{\left(N^{\prime}-N\right)!}=N^{\prime}\left(N^{\prime}-1\right)\left(N^{\prime}-2\right) \cdots\left(N^{\prime}-N+1\right) \simeq N^{\prime N} \text { since eact term is } \\
\Rightarrow & P \simeq \frac{N^{\prime N}}{N^{\prime}!}\left(\frac{V}{V^{\prime}}\right)^{N}\left(1-\frac{V}{V^{\prime}}\right)^{N^{\prime}}=\frac{\langle N\rangle^{\prime}}{N^{\prime}!}\left(1-\frac{\langle N\rangle}{N^{\prime}}\right)^{N^{\prime}}
\end{aligned}
$$

by recognizing that $\langle N\rangle=N^{\prime} V / V^{\prime}$. Additionally

$$
N^{\prime} \ln \left(1-\frac{\langle N\rangle}{N^{\prime}}\right) \simeq-\langle N\rangle
$$

So ne can approximate the second factor by $e^{-\langle N\rangle}$

$$
\Rightarrow P=\frac{\langle N\rangle^{N}}{N!} e^{-\langle N\rangle}
$$

