Problem Review Session 1
 PHYS 741

Zach Nasipak

February 10, 2018

Disclaimer: The problems below are not my own making but are taken from A Guide to Physics Problems: Part 2 (GPP2) and Princeton Problems in Physics (PPP).

Practice Problems

1. (GPP2 4.12 Hydrogen Rocket) The reaction chamber of a rocket engine is supplied with a mass flow rate m of hydrogen and sufficient oxygen to allow complete burning of the fuel. The cross section of the chamber A, and the pressure at the cross section is P with temperature T. Calculate the force that the chamber is able to provide.
2. (PPP 4.4 Phase Coexistence) The temperature of a long vertical column of a particular substance is T everywhere. Below a certain height $h(T)$ the substance is solid, whereas above $h(T)$ it is in a liquid phase. Calculate the density difference $\Delta \rho=\rho_{s}-\rho_{l}$ between the solid and liquid ($|\Delta \rho| \ll \rho_{s}$) in terms of L (the latent heat of fusion per unit mass), $d h / d T, T, \rho_{l}$ and g, the acceleration due to gravity.
3. (GPP2 4.51 Nonideal Gas Equation) A gas obeys the equation of state

$$
P=N k\left(\frac{T}{V}+\frac{B(T)}{V^{2}}\right)
$$

where $\mathrm{B}(\mathrm{T})$ is a function of the temperature T only. The gas is initially at temperature T and volume V_{0} and is expanded isothermally and reversibly to volume $V_{1}=2 V_{0}$.
(a) Find the work done in the expansion.
(b) Find the heat absorbed in the expansion.
4. (PPP 4.5 Otto Cycle) The operation of a gasoline engine is (roughly) similar to the Otto cycle (Fig 1), where:

- $A \rightarrow B$: Gas compressed adiabatically
- $B \rightarrow C$: Gas heated isochorically (constant volume; corresponds to combustion of gasoline)
- $C \rightarrow D$: Gas expanded adiabatically (power stroke)
- $D \rightarrow A$: Gas cooled isochorically

Compute the efficiency of the Otto cycle for an ideal gas (with temperature-independent heat capacities) as a function of the compression ratio V_{A} / V_{B}, and the heat capacity per particle C_{V}.
5. (GPP2 4.32 Joule Cycle) Find the efficiency of the Joule cycle, consisting of two adiabats and two isobars (see Fig 2). Assume that the heat capacities of the gas C_{P} and C_{V} are constant.
6. (GPP2 4.53 Critical Parameters) Consider a system described by the Dietrici equation of state

$$
P(V-n B)=n N_{A} k T e^{-n A / N_{A} k T V}
$$

where A, B, k, N_{A} and R are constants and P, V, T, and n are the pressure, volume, temperature, and number of moles. Calculate the critical parameters, i.e., the values of P, V, and T at the critical point.

Session 1 Prbbean 1 G.PP2 4.12
Hydrogen Rocket $\left|\begin{array}{l}m_{1}{ }^{H_{2}} \\ \sigma_{2}\end{array}\right|$
We begin by considering the forces that act on the chamber

$$
F_{\text {tot }}=F_{\text {out }}+F_{p}
$$

where Pout refers to the force produced by the mass outflow due to fuel combustion, while F_{p} is the force dive to the pressure differential at the interface of the chamber \& the external environment. For a traditional voclect, when the combustion products exit through a nozzle to maximize the outflow velocity, the second term is negligible. For this problem

$$
F_{p}=P A
$$

but we will neglect it \& focus on the reaction thrust from the mass flow from the chamber, Foot
As one may recall from classical mechanics

$$
\vec{F}=\frac{d \stackrel{\rightharpoonup}{p}}{d t}=\dot{m} \vec{v}+m \bar{a}
$$

In this case $\vec{F}_{\text {out }}$ actually arises from the former torn rather than the latter
\therefore we need to calculate \vec{v} the velocity of material leaving the chamber and \bar{m}, the mass outflow rate. To determine the outflow rate we can first consider the material actually being produced in the combustion chamber. The reaction in the chamber would be

$$
2 \mathrm{H}_{2}+\mathrm{O}_{2} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}
$$

\therefore the amount of hydrogen that enters the system is equal to the amount of water vapor that leaves the chamber, ie.

$$
\dot{n}_{H_{L}}=\dot{n}_{H_{2} D}
$$

Now $m=\dot{n}_{H_{2}} \mu_{\mathrm{H}_{2}}=(2 \mathrm{~g}) \dot{n}_{\mathrm{H}_{2}}=(2 \mathrm{~g}) \dot{n}_{\mathrm{H}_{2} \mathrm{O}}$
while $\dot{m}=\dot{n}_{H_{2} \mathrm{O}} \mu_{\mathrm{H}_{2} \mathrm{O}}=(18 \mathrm{~g}) \dot{n}_{\mathrm{H}_{2} \mathrm{O}}=9 \mathrm{~m}$

So now we know in \& just need to solve for \vec{V}. Imagine that at a given moment, the $H_{2} \mathrm{O}$ produced in the chamber takes up a volume V. Then the volume decreases by $d V$ given by

$$
d V=A d x
$$

where A is the cross-section of the chamber $\& X$ is the distance along the the direction of mass flow. Therefore we can express the mass outflow rate as

$$
\dot{m}=\frac{d}{d t}(\rho V)=\rho \frac{d V}{d t}=\rho A \frac{d x}{d t}=\rho A v
$$

when ρ is the density of $\mathrm{H}_{2} \mathrm{O} \&$ we recognize $\frac{d x}{d t}=v$

$$
\Rightarrow v=\frac{9 m}{p A}
$$

So now re must solve for ρ

$$
\begin{aligned}
& \Rightarrow p=\frac{n_{H_{2} \mathrm{O}} \mu_{H_{2} \mathrm{D}}}{V}=\frac{P \mu_{H_{2} \mathrm{O}}}{R T} \\
& \Rightarrow v=\frac{q_{m R T}}{P_{\mu_{H_{2} \mathrm{O}} A}}
\end{aligned}
$$

when we assumed $\mathrm{H}_{2} \mathrm{O}$ product beherass like or ideal gas w/ equation of state

$$
\frac{P}{R T}=\frac{n}{V}
$$

$\therefore F=\frac{81 m^{2} R T}{\mu_{H_{\nu}} P A}$
Notice that this is maximized by reducing
$P A$, which is related to F. This is why PA, which is Plated to F_{P}. This is why rocket nozzles are designed to ${ }^{P}$ reduce PA \& as a result, why F_{p} is negligible compared to $F_{\text {out. }}$

Session 1 Problem 2
We begin with the Clausius-Clapeyron equation, since this defines the phase transition or phase coexistence curve on a P-T diagram \& ne have a substance existing in two distinct phasis in this problem.

$$
\frac{d P}{d T}=\frac{L}{T \Delta v}
$$

Recall that v is the volume per a unit mass (i.e. inverse density), Δv describes the specific volume change of the phase transition, and $L=T \Delta s$ is the latent heat w / s us the entropy per unit mass \& Δs is the specific entropy change from the phase transition
For this problem we are given $L=$ latent heat of fusion which means we are concerned about the transition from a solid to liquid

$$
\Rightarrow \Delta s=s_{l}-s_{s} \& \Delta v=v_{l}-v_{s}=\frac{1}{\rho_{l}}-\frac{1}{\rho_{s}}
$$

Rearranging the second relation, we see that

$$
\begin{aligned}
\Delta v & =\frac{\rho_{s}-p_{l}}{\rho_{s} p_{l}}=\frac{\Delta p_{s}}{\rho_{s} \rho_{l}} \\
\therefore \quad \Delta p & =\frac{L}{T d p_{d T}} p_{s} \rho_{l}
\end{aligned}
$$

Expanding $d P / d T$ in terms of the height function $h(T)$

$$
\Rightarrow \frac{d P}{d T}=\frac{d h}{d T} \frac{d P}{d h}
$$

Therefore we need to determine dP/dh. I'll demonstrate a longer derivation first. we know that the pressure © the surface of a liquid in a tube is merely

$$
\begin{gathered}
P=\rho_{l} g \Delta z \quad \begin{array}{c}
\text { where } \Delta z \text { is the height of } \\
\text { the liquid }
\end{array}
\end{gathered}
$$

From Fig 1, we $\sec \Delta z=H-h$

$$
\Rightarrow \frac{d P}{d h}=\rho_{l} g\left(\frac{d H}{d h}-1\right)
$$

where H also depends on h by non-trivially depending on T, just like h

To solve for $d H / d h$ we can consider that, while the height of the mixture is not constant as a function of temperature, the total mass of the system is constant, ie.

$$
\begin{aligned}
& m=\rho_{s} A h+\rho_{e} A(H-h) \\
\Rightarrow & \frac{d m}{d h}=0=\rho_{s} A+\rho_{e} A\left(\frac{d H}{d h}-1\right) \\
\therefore \frac{d P}{d h} & =-\rho_{s} g
\end{aligned}
$$

which gives us the final result

$$
\Delta p=\frac{-\rho_{l} L}{g T(d h / d T)}
$$

Session 1 Problem 3 GPP2 4.57 Nonideal Gas Equation
We hare the equation of state $P=N k\left(\frac{T}{V}+\frac{B(T)}{V^{2}}\right)$
a)

Work dore in the expansion: $W=-\int_{V_{i}}^{V_{f}} P d V \quad W / \begin{aligned} & V_{i} \\ & =V_{0} \& \\ & \text { problem }\end{aligned} V_{f}=2 V_{0}$ for this
Note we pick up a negative sign because ne are concerned about the work done in the system, not by the system on its environment

$$
\begin{aligned}
\Rightarrow W & =-\int_{V_{0}}^{2 V_{0}} N k\left(\frac{T}{V}+\frac{B(T)}{V^{2}}\right) d V \\
W & =-N k T \ln 2-\frac{N k B(T)}{2 V_{0}}
\end{aligned}
$$

b) So now we are looking for the heat absorbed, which is given by

$$
Q_{i n}=\int_{v_{b} \rightarrow 2 v_{0}} T d S
$$

since we are dealing wI a reversible process. This is an isothermal expansion so $T=$ canst \& independent of S

$$
\Rightarrow Q_{\text {in }}=T\left[S\left(2 V_{0}\right)-S\left(V_{0}\right)\right]
$$

To relate S \& V we must first relate S \& P. We car do this by consideny the Helmholtz free energy

$$
d A=-S d T-P d V
$$

which gives us the Maxwell relation

$$
\begin{gathered}
\left(\frac{\partial S}{\partial V}\right)_{T}=\left(\frac{\partial P}{\partial T}\right)_{V} \\
\Rightarrow S=N k \int\left(\frac{1}{V}+\frac{B^{\prime}(T)}{V^{2}}\right) d V=N k \ln \left(\frac{V}{V_{c}}\right)-\frac{N k B^{\prime}(T)}{V}+C(T)
\end{gathered}
$$

where V_{c} is a constant of integration as well as $(1 T)$ due tohdding T cost and $B^{\prime}(T)=\frac{\partial B}{\partial T}$

Evaluating S(V) for the initial \& final volumes, we see that

$$
Q_{\text {in }}=N_{k} T\left(\ln 2+\frac{B^{\prime}(T)}{2 V_{0}}\right)
$$

Session 1 Problem 4
We want to compute the efficiency, which is defined by

$$
\eta=\frac{W_{\text {tot }}}{Q_{\text {in }}}
$$

We are dealing w/ a cyclic process, so $d U=0$

$$
\Rightarrow d W=d Q
$$

The process is also reversible

$$
\Rightarrow d Q=T d S
$$

From the diagrams, we see that heat is absorbed rejected in the transformations from $B=C$ \& $D \rightarrow A$ respectively (since $C \rightarrow D \& A \rightarrow B$ are adiabatic)

$$
\begin{aligned}
\therefore & W_{\text {tot }}=Q_{B \rightarrow C}+Q_{D \rightarrow A} \\
& Q_{\text {in }}=Q_{B \rightarrow C} \\
\Rightarrow & \eta=1+\frac{Q_{D \rightarrow A}}{Q_{B \rightarrow C}}
\end{aligned}
$$

* Note in the diagrams use

$$
\text { use } Q_{\text {out }}=-Q_{D \rightarrow A}>0
$$

To calculate the heat for these tho transformations, we must determine T as a a function of S. So ne begin with the fist law
$d V=T d S-P d V=T d S-\frac{N k T}{V} d V$ assuming an ideal gas
Because C_{V} is temperature independent $C_{V}=\left(\frac{\partial U}{\partial T}\right)_{V} \Rightarrow d U=C_{V} d T$

$$
\Rightarrow d S=C_{V} \frac{d T}{T}+N k \frac{d V}{V}
$$

Integrating this equation we find that

$$
S=C_{V} \ln T+N k \ln V+\alpha
$$

where α is an integration constant
Inverting to get S a< a function of T

Now we can insert our temperature function into the integrals over entropy

$$
\begin{aligned}
\Rightarrow Q_{B \rightarrow C} & =\int_{S_{2}}^{S_{1}} T\left(S, V_{B}\right) d S=\beta V_{B}^{-N k / c_{V}} \int_{S_{2}}^{S_{1}} e^{S / c_{v}} d S \\
& =\beta V_{B}^{-N k / c_{v}} C_{V}\left(e^{S_{1} / c_{v}}-e^{S_{2} / c_{v}}\right) \\
Q_{D \rightarrow A} & =\int_{S_{1}} T\left(S, V_{A}\right) d S=\beta V_{A}^{-N k / c_{v}} C_{V}\left(e^{S_{2} / c_{v}}-e^{S_{1} / c_{v}}\right)
\end{aligned}
$$

Consequently, plugging into our expression for the effioencuy we find that

$$
\begin{aligned}
& \eta=1+\frac{Q_{D \rightarrow A}}{Q_{B \rightarrow C}} \\
& \eta=1-\left(\frac{V_{A}}{V_{B}}\right)^{-W k / C}
\end{aligned}
$$

As a useful exercise you can also calculate the efficiency from

$$
\eta=\frac{W_{\text {tot }}}{Q_{\text {in }}}
$$

by considering $W_{\text {tot }}=W_{A \rightarrow B}+W_{V_{f} \rightarrow 0}$ and calculating

$$
W_{i \rightarrow j}=\int_{V_{i}}^{V_{j}} P d V=N k \int_{V_{i}}^{V_{f}} \frac{T\left(V_{1} S_{1,2}\right)}{V} d V \text { for each transformation }
$$

This should give you the same value of η as above.

Session 1 Problem 5 GPP2 4.32 Jock Cycle
Recall that the efficiency is gits u by

$$
\eta=\frac{W_{\text {tot }}}{Q_{\text {in }}}
$$

where $Q_{\text {in }}$ is the heat absorbed \& $W_{\text {tot }}$ is the total work done by the system
From the diagram, we see that $Q_{i n}=Q_{2 \rightarrow 3}$
where $Q_{2 \rightarrow 3}$ is the heat absolved from $2 \rightarrow 3$.
This is a cyclic process $\therefore d U=0 \Rightarrow d Q=d W$
$\Rightarrow W_{\text {tot }}=Q_{2 \rightarrow 3}+Q_{4 \rightarrow 1}$ since $3 \rightarrow 4 \& 1 \rightarrow 2$ are adiabatic
Because these an constant pressure processes \& C_{p} is temperature independent ne can take advantage of the relation

$$
C_{P}=\left(\frac{\partial Q}{\partial T}\right)_{P}
$$

by rewriting it as $d Q=C_{p} d T \Rightarrow Q_{i \rightarrow j}=C_{p}\left(T_{j}-T_{i}\right)$ when T_{i} \& T_{j} are the temperatures C points i \& j on the PV plot where $i, j=1,2,3,4$.

$$
\therefore \quad \eta=\frac{W_{\text {tot }}}{Q_{\text {in }}}=1+\frac{Q_{4 \rightarrow 1}}{Q_{2 \rightarrow 3}}=1+\frac{T_{1}-T_{4}}{T_{3}-T_{2}}
$$

But we wont our answer in terms of $P_{1} \& P_{2} \therefore$ we first use the ideal gas law

$$
\Rightarrow \eta=1+\frac{P_{1}}{P_{2}}\left(\frac{V_{1}-V_{4}}{V_{3}-V_{2}}\right) \quad \text { when we used the fo } \quad P_{1}=P_{4} \& P_{2}=P_{3}
$$

We can eliminate V by considering the adiabatic transformations, along which

$$
\begin{aligned}
& P V^{r}=\text { const } \quad \text { where } r \equiv C_{P} / C_{V} \\
\Rightarrow V & \sim P^{-1 / \gamma \quad} \quad \frac{V_{4}}{V_{3}}=\left(\frac{P_{2}}{P_{1}}\right)^{1 / r} \frac{V_{1}}{V_{2}}=\left(\frac{P_{2}}{P_{1}}\right)^{1 / r}
\end{aligned}
$$

\therefore we find that $\eta=1+\frac{P_{1}}{P_{2}}\left[\frac{\left(V_{2}-V_{3}\right)\left(P_{2} / P_{1}\right)^{1 / 2}}{V_{3}-V_{2}}\right]$ or $\eta=1-\left(\frac{P_{1}}{P_{2}}\right)^{(r-1) / \gamma}$

Session 1 Problem 6 GPP2 4.53 Critical Parameters
Recall that a critical point meets the conditions

$$
\begin{aligned}
&\left(\frac{\partial P}{\partial V}\right)_{T_{i} T_{c}}=0 \quad \&\left(\frac{\partial^{2} P}{\partial V^{2}}\right)_{T=T_{c}}=0 \\
& \therefore \quad P=n N_{A} k T e^{-n A / N_{A} k T V}(V-n B)^{-1} \\
& \equiv \alpha(T) e^{-\beta(T) / V}(V-n B)^{-1} \quad \text { with } \alpha(T) \equiv n N_{A} k T \\
& \Rightarrow\left(\frac{\partial P}{\partial V}\right)_{T_{c}}=-\alpha_{c} e^{-\beta / V}\left(V_{c}-n B\right)^{-2}+\alpha_{c} e^{-\beta / V_{c}} \beta_{c} V_{c}^{-2}\left(V_{c}-n B\right)^{-1}=0
\end{aligned}
$$

which gives us $\beta_{c} V_{c}^{-2}\left(V_{c}-n B\right)^{-1}=\left(V_{c}-n B\right)^{-2}$

$$
\text { with } \begin{aligned}
\alpha_{c} & \equiv \alpha\left(T_{c}\right) \\
\beta_{c} & \equiv \beta\left(T_{c}\right)
\end{aligned}
$$

$$
\Rightarrow \beta_{c}^{-1}=\left(V_{c}^{-}-n B\right) V_{c}^{-2}
$$

Likewise we han

$$
\begin{aligned}
& \left(\frac{\partial^{2} P}{\partial V^{2}}\right)_{T=T_{c}}=2 \alpha_{c} e^{-\beta / V_{c}\left(V_{c}-n B\right)^{-2}-\alpha_{c} e^{-\beta / V_{c}} \beta_{c} V_{c}^{-2}\left(V_{-n}^{-\beta B}\right)^{-2}-\alpha_{c} e^{-\beta \alpha_{c}} \mathcal{p}_{c}\left(V_{c}-n B\right)^{-2} V_{c}^{-2}}
\end{aligned}
$$

Multiply by $V_{c}\left(V_{c}-n B\right)^{3}$ \& recall that $\beta_{c}=V_{c}^{2}\left(V_{c}-n B\right)^{-1}$

$$
\begin{aligned}
& \Rightarrow 2 V_{c}-\lambda V_{c}-2\left(V_{c}^{-n B}\right)+V_{c}=0 \\
& V_{c}=2 n B \\
& \Rightarrow \beta_{c}^{-1}=N_{A} k T_{c} / n A=n B /\left(4 n^{2} B^{2}\right)=(4 n B)^{-1} \\
& \Rightarrow T_{c}=\frac{A}{4 N_{A} k B}
\end{aligned}
$$

Plugging into our equation for pressure we find

$$
P_{C}=N \|_{A}\left(\frac{A}{4 W_{A} B}\right) e^{-\left((\alpha / / N A A)\left(\frac{4 K_{A} B}{A}\right)\left(\frac{1}{2 . B}\right)\right.}(n B)^{-1}=\frac{A}{4 B^{2}} e^{-2}=P_{C}
$$

