8.1 Find the density matrix for a partially polarized incident beam of electrons in a scattering experiment, in which a fraction f of the electrons are polarized along the direction of the beam and a fraction 1 - f is polarized opposite to the direction of the beam.

Publims 8.1, 8.2, 8.4, 8.5

In general, we can express a mixed state of N particles with a density matrix

$$\rho = \sum_{i=1}^{\infty} \frac{N_i}{N} |\chi_i \rangle \langle \chi_i |$$

HW #7 Solutions

8.1)

where $|\chi_i\rangle$ indicates the its state, where W_i particles are in this state. The "h" refers to the number of mixed states that indue -up the system. For this problem then are two states, which I will denote by $|\uparrow\rangle$ & $|-\rangle$, where $|+\rangle$ denotes electrons polorized in the direction of the Lecan & $|-\rangle$ denotes electrons polorized in the opposite direction.

=> p= f |1><11 + (1-f)1-><-1

8.2) 8.2 Derive the equations of state (8.67) and (8.71), using the microcanonical ensemble.
Section 8.5 steps us through most of the derivation of ideal Base & Fermi gases using microcanonical children theory, so I will just begin when they left off.
So let's start w/

$$\frac{S}{k} = \sum_{i} g_{i} \left[\frac{fe_{i} - Anz}{z^{i} e^{R_{i} \pm 1}} \pm ln((1 \pm ze^{R_{i}})) \right] (Huang 8.48)$$

$$\frac{S}{k} = \sum_{i} g_{i} e_{i} \frac{fe_{i} - Anz}{z^{i} e^{R_{i} \pm 1}} \pm ln((1 \pm ze^{R_{i}}))$$
(Huang 8.48)

$$Additionally, since we know (H = Fermi)$$

$$Additionally, since we know (H = Fermi)$$

$$(J) = \frac{1}{8000}$$
We also have

$$\langle E \rangle = \sum_{i} g_{i} e_{i} n_{i} = \sum_{i} \frac{g_{i} e_{i}}{z^{i} e^{R_{i} \pm 1}}$$
To the purposes of this produm $g_{i} = 1$. To solve for the pressure, we consider that

$$P = - \left(\frac{2A}{AV}\right) = A = U - TS = \langle E \rangle - TS$$

$$\Rightarrow A = \sum_{i} \frac{e_{i}}{z^{i} e^{R_{i} \pm 1}} - \sum_{i} \left[\frac{fe_{i}}{z^{i} e^{R_{i} \pm 1}} \pm kTA((1 \pm ze^{R_{i}})) \right]$$

$$= kTAnz \sum_{i} \frac{fe_{i} \pm 1}{z^{i} e^{R_{i} \pm 1}} = \sum_{i} ln(1 \pm ze^{R_{i}}) kT$$

$$= NkT lnz \mp \sum_{i} ln(1 \pm ze^{R_{i}}) kT$$

As $V \Rightarrow \infty$, we can consider the continuum limit. For Fermi statistics ve get $\frac{A_{F}}{1} = N \ln z - \frac{V}{h^{3}} \int 4\pi p^{2} dp \ln(1 + z e^{\beta p_{em}^{2}})$ Then we can take the derivative wit V to get the pressure, but we must keep in mind that Z is a function of V $=) \frac{P}{kT} = -\frac{N}{2} \frac{\partial z}{\partial V} + \frac{4\pi}{h^3} \int p^2 dp ln (1 + 2e^{-\beta p^2 / 2m})$ + $\frac{4\pi V}{b^3}\int p^2 dp \frac{z}{z^{-1}e^{-\beta p^3 2m}+1} \left(\frac{2z}{\partial V}\right)$ So the first & last term cancel, so that we denie @ $\frac{P}{kT} = \frac{4\pi}{h^3} \int p^2 dp \ln\left(1 + ze^{-\beta p^2 zm}\right)$ I don't know if this is explicitly stated in the book but the chemical potential is essentially given by MN=G Cittes free energy Ndy = Vdp - Sot for N huld-constant $\Rightarrow N = (\frac{dP}{dn}) = \frac{\partial P}{\partial lnz} = \frac{2}{LT} \frac{\partial P}{\partial z}$ $\Rightarrow \frac{1}{3} = \frac{4\pi}{h^3} \int_{0}^{\infty} dp p^2 \frac{1}{2^{-1}e^{\frac{1}{p}}}$ We see that those expressions match (8.67). We can use a similar process for the ideal Bose gas

For Bose Statistics, we first split off the $\vec{p}=0$ contribution, since in the limit $p \Rightarrow 0 \& Z \Rightarrow 1$, $\ln(1-2e^{\beta \varepsilon_p})$ diverges & thurfore can dominate contributions to the free every $\Rightarrow \frac{AB}{kT} = N \ln z + \ln(1-z) + \frac{V}{h^3} \int 4\pi p^2 \ln(1-ze^{-\beta p^2/2m})$ However, we see that because of the 2nd term we will not get a cancellation of all 2/2/ terms after taking derivatives w.r.t. V. So I'll highlight a different opproach. Instead begin w/ $N = \frac{2}{P} \frac{2e^{\beta\epsilon_p}}{1-2e^{\beta\epsilon_p}} \approx \frac{2}{1-2} + \frac{V}{h^3} \int 4\pi p^2 dp \frac{1}{2e^{\beta p k m} - 1}$ using the same logic as before. Immediately we get $\frac{1}{v} = \frac{1}{\sqrt{1-2}} + \frac{4\pi}{h^3} \int_{0}^{\infty} p^2 dp \frac{1}{\overline{z'e^{\beta p^2 2m}} - 1}$ Recalling that $\frac{1}{\nu} = \frac{7}{kT} \left(\frac{\partial P}{\partial z} \right)_T \Rightarrow \frac{P}{kT} = \int \frac{dz}{z} I$ $\Rightarrow \frac{P}{kT} = -\frac{4\pi}{h^3} \int dp \, p^2 \ln\left(1 - z \bar{c} \beta \bar{\beta}_{2m}^{2}\right) - \frac{1}{V} \ln(1 - z)$ We see that this is the same as (8.71) * Technically there is a constant of integration that depends on temperature, but you could show that it doesn't contribute.

8.4 Verify (8.49) for Fermi and Bose statistics, i.e., the fluctuations of cell occupations are small.

8.5 Calculate the grand partition function for a system of N noninteracting quantum mechanical harmonic oscillators, all of which have the same natural frequency ω_0 . Do this for the following two cases:

- (a) Boltzmann statistics
- (b) Bose statistics.

85)

Suggestions. Write down the energy levels of the N-oscillator system and determine the degeneracies of the energy levels for the two cases mentioned.

(a) I will start off with Boltzmann statistics. The energy leak of the Quantum Harmonic Oscillator is given by $\varepsilon_{\rm h} = (k + \frac{1}{2}) \hbar \omega$ Therefore we can write the partition function for a single particle Using Boltzmann statistics as $Q_1 = \sum_{k} e^{-\beta \epsilon_k} = \frac{1}{e^{\beta \epsilon_w/2} - e^{\beta \epsilon_w/2}} = \frac{1}{2 \sinh(\beta t_w/2)}$ For N-independent (indistinguishable) QHO's, we have $Q_N = \prod_{i \in V} Q_i^N$ $: \mathcal{F} = \sum_{N=0}^{\infty} z^{N}Q_{N} = \sum_{N=0}^{\infty} (\overline{z}Q_{1})^{N} = \exp[\overline{z}Q_{1}]$ \Rightarrow $lhZ = ZQ_1 = \frac{Z}{2sinh(\beta tw/2)}$ (b) To address the Bose Statistics, we go the usual route of writing the grand partition function as $\mathcal{X} = \sum_{N=0}^{\infty} \sum_{S_{N,S}} z^{N} e^{-\beta E[z_{N,S}]} \quad \text{where} \quad E[z_{N,S}] = \sum_{k=0}^{\infty} z_{k} n_{k}$ Th=N $= \sum_{N=0}^{\infty} \sum_{s_{N_{k}}} exp\left[\beta \sum_{k} N_{k}(\mu - \varepsilon_{k})\right]$ 5n.=N

 $\overline{Z} = \sum_{N=0}^{\infty} \overline{Z_{N,3}} \prod_{k} \exp[-\beta n_k(\varepsilon_k - \mu)]$ $\overline{Z_{N_k=N}}$ Recall that we can rearrange the products & sums as $Z = \prod \sum_{k=0}^{\infty} \exp[-\beta n(\varepsilon_k - \mu)]$ Note that if we used this same process w/ Boltzmann Statistics, 've would have an additional factor of 1/n?, which would give us the same answer as before $= \prod \frac{1}{k - e^{\beta(\epsilon_k, \mu)}}$ $\Rightarrow ln Z = - \sum_{k=0}^{\infty} ln (1 - ze^{-\beta \hbar \omega (k+\frac{1}{2})})$