HL \# 7 Solutions
Problems 8.1, 8.2, 8.4, 8.5
Q.1) 8.1 Find the density matrix for a partially polarized incident beam of electrons in a scattering experiment, in which a fraction f of the electrons are polarized along the direction of the beam and a fraction $1-f$ is polarized opposite to the direction of the beam.

In general, we can express a mixed state of N particles with a density matrix

$$
\rho=\sum_{i=1}^{n} \frac{N_{i}}{N}\left|\psi_{i}\right\rangle\left\langle\chi_{i}\right|
$$

where $\left|X_{i}\right\rangle$ indicates the th state, where W_{i} particles are in this state. The " n " refers to the number of mixed states that make - up the system. For this problem then an two states, which I will devote by $|\uparrow\rangle \& \mid \rightarrow$, when $|+\rangle$ denotes' electrons polarized in the direction of the beam $\& \mid \rightarrow$ denotes electrons polarized in the opposite direction.

$$
\Rightarrow \rho=f|\uparrow\rangle\langle\uparrow|+(1-f)|-\rangle\langle-1
$$

8.2) 8.2 Derive the equations of state (8.67) and (8.71), using the microcanonical ensemble.

Section 8.5 steps us through most of the derivation of ideal Bose \& Fermi gases using micucanonical ensemble theory, so I will just begn when they left off.
So let's start w/

$$
\frac{S}{k}=\sum_{i} g_{i}\left[\frac{\beta \epsilon_{i}-\ln z}{z^{-1} e^{\beta \epsilon_{i} \pm}-1} \pm \ln \left(1 \pm z e^{-\beta t_{i}}\right)\right]
$$

(Huang 8.48)

$$
()=\binom{\text { Fermi }}{\text { Bose }}
$$

Additionally, since ne know

$$
\begin{array}{ll}
\left\langle n_{i}\right\rangle=\frac{1}{7^{-1} e^{\beta \beta_{i} \pm 1}} & (t)=\text { Fermi } \\
(-)=\text { Boson }
\end{array}
$$

We also have

$$
\langle E\rangle=\sum_{i} g_{i} \epsilon_{i} n_{i}=\sum_{i} \frac{g_{i} t_{i}}{z^{-1} e^{\beta \epsilon_{i} \pm 1}}
$$

For the purposes of this problem $g_{i}=1$. To solve for the pressure, we Consider that

$$
\begin{array}{rl}
P & P=-\left(\frac{\partial A}{\partial V}\right) \quad \& \quad A=U-T S=\langle E\rangle-T S \\
\Rightarrow A & =\sum_{i} \frac{\epsilon_{i} /}{z^{-1} e^{\beta \epsilon_{i}} \pm 1}-\sum_{i}\left[\frac{t_{i}}{z^{-1} e^{\beta \epsilon_{i} \pm 1}}-\frac{k T \ln z}{z^{-1} e^{\beta \epsilon_{i}} \pm 1} \pm k T \ln \left(1 \pm z e^{-\beta \epsilon_{i}}\right)\right] \\
A & =\sum_{i} \frac{k T \ln z}{z^{-1} e^{\beta \epsilon_{i}} \pm 1} \mp k T \ln \left(1 \pm z e^{-\beta \epsilon_{i}}\right) \\
& \left.=k T \ln z \sum_{i}^{\sum_{i}\left(\frac{1}{z^{-1} e^{\beta \epsilon_{i}} \pm 1}\right.}\right) \mp \sum_{i} \ln \left(1 \pm z e^{-\beta \epsilon_{i}}\right) k T \\
& =N k T \ln z \mp \sum_{i} \ln \left(1 \pm z e^{-\beta \epsilon_{i}}\right) k T
\end{array}
$$

As $V \rightarrow \infty$, we can consider the continuum limit. For Fermi statistics ne get

$$
\frac{A_{p}=}{k T} \quad N \ln z-\frac{V}{h^{3}} \int_{0}^{\infty} 4 \pi p^{2} d p \ln \left(1+z e^{-\beta p^{2} / 2 m}\right)
$$

Then we can take the derivative wee V to get the pressure, but we must keep in mind that z is a function of V

$$
\begin{aligned}
& \Rightarrow \frac{P}{k T}=-\frac{N}{z} \frac{\partial z}{\partial V}+\frac{4 \pi}{h^{3}} \int_{0}^{\infty} p^{2} d p \ln \left(1+z e^{-\beta p} / 2 m\right) \\
&+\underbrace{\frac{4 \pi V}{h^{3}} \int_{0}^{\infty} p^{2} d p \frac{z^{-1}}{z^{-1} e^{-\beta p^{2} / 2 m+1}}\left(\frac{\partial z}{\partial V}\right)}_{N}
\end{aligned}
$$

So the first Δ last term cancel, so that ne arrive (

$$
\frac{p}{k T}=\frac{4 \pi}{h^{3}} \int_{0}^{\infty} p^{2} d p \ln \left(1+z e^{-\beta p^{2} / 2 m}\right)
$$

I don't know if this is explicitly stated in the book but the chemical potential is essentially given by
$\mu N=G<$ Gibbs free energy
$\therefore \quad N d \mu=V d p-S d T$ for N held-constant

$$
\begin{aligned}
& \Rightarrow \frac{N}{V}=\left(\frac{d P}{\partial \mu}\right)_{T}=\frac{\partial P}{\partial \ln z} \frac{1}{k T}=\frac{z}{k T} \frac{\partial P}{\partial z} \\
& \Rightarrow \frac{1}{z}=\frac{4 \pi}{h^{3}} \int_{0}^{\infty} d p p^{2} \frac{1}{z^{-1} e^{p P / 2 m+1}}
\end{aligned}
$$

We see that these expressions match (8.67). We car use a similar process for the ideal Bose gas

For Bose statistics, he first split off the $\vec{P}=0$ contribution, since in the limit $p \rightarrow 0$ \& $z \rightarrow 1, \ln \left(1-z e^{\Gamma \beta \epsilon_{p}}\right)$ diverges \& thenfore can dominate contributions to the free energy

$$
\Rightarrow \frac{A_{B}}{k T}=N \ln z+\ln (1-z)+\frac{V}{h^{3}} \int_{0}^{\infty} 4 \pi p^{2} \ln \left(1-z e^{-\beta p^{2} / 2 m}\right)
$$

However, we see that, because of the $2^{\text {nd }}$ term ne will not get a cancellation of all $\mathrm{dz} / \mathrm{dV}$ terms after taking derivatives w.r.t. V. So I'll highlight a different approach Instead begin w/

$$
N=\sum_{p} \frac{z e^{-\beta t_{p}}}{1-z e^{-\beta \epsilon_{p}}} \simeq \frac{z}{1-z}+\frac{V}{h^{3}} \int_{0}^{\infty} 4 \pi p^{2} d p \frac{1}{z^{-1} e^{\beta p^{2} / 2 m}-1}
$$

using the same logic as before. Immediately we get

$$
\frac{1}{v}=\frac{1}{V} \frac{z}{1-z}+\frac{4 \pi}{h^{3}} \int_{0}^{\infty} p^{2} d p \frac{1}{z^{-1} e^{\beta p / 2 m}-1}
$$

Recalling that

$$
\begin{gathered}
\frac{1}{v}=\frac{z}{k T}\left(\frac{\partial p}{\partial z}\right)_{T} \Rightarrow \frac{p}{k T}=\int \frac{d z}{z} \frac{1}{v} \\
\Rightarrow \frac{p}{k T}=-\frac{4 \pi}{h^{3}} \int_{0}^{\infty} d p p^{2} \ln \left(1-z e^{-\beta p^{2} / 2 m}\right)-\frac{1}{v} \ln (1-z)
\end{gathered}
$$

We see that this is the same as (8.71)

* Technically there is a constant of integration that depends on temperature, but you could show that it doesn't contribute.
8.4)
8.4 Verify (8.49) for Fermi and Bose statistics, ie., the fluctuations of cell occupations are small.

Solution is given in the book
8.5) 8.5 Calculate the grand partition function for a system of N noninteracting quantum mechanical harmonic oscillators, all of which have the same natural frequency ω_{0}. Do this for the following two cases:
(a) Boltzmann statistics
(b) Bose statistics.

Suggestions. Write down the energy levels of the N-oscillator system and determine the degeneracies of the energy levels for the two cases mentioned.
(a) I will start off with Boltzmann statistics. The energy lent of the Quantum Harmonic Oscillator is given by

$$
\varepsilon_{k}=(k+1 / 2) \hbar \omega
$$

Therefore we can write the partition function for a single particle using Boltzmann statistics as

$$
Q_{1}=\sum_{k} e^{-\beta \varepsilon_{k}}=\frac{1}{e^{+\beta \hbar \omega / 2}-e^{-\beta \omega_{\omega} / 2}}=\frac{1}{2 \sinh (\beta \hbar \omega / 2)}
$$

For N-independent (indistinguishable) QHO's, we have

$$
\begin{aligned}
& Q_{N}=\frac{1}{N!} Q_{1}^{N} \\
\therefore & F=\sum_{N=0}^{\infty} z^{N} Q_{N}=\sum_{N=0}^{\infty} \frac{\left(z Q_{1}\right)^{N}}{N!}=\exp \left[z Q_{1}\right] \\
\Rightarrow & \ln \mathcal{Z}=z Q_{1}=\frac{z}{2 \sinh (\beta \hbar \omega / 2)}
\end{aligned}
$$

(b) To address the Bose statistics, we go the usual route of writing the grand partition function as

$$
\begin{aligned}
Z & =\sum_{N=0}^{\infty} \sum_{\substack{\left\{n_{k}\right\} \\
\sum n_{k}=N}} z^{N} e^{\left.-\beta E\left[n_{3}\right\}\right]} \quad \text { where } \quad E\left[\left\{n_{k}\right\}\right]=\sum_{k} \varepsilon_{k} n_{k} \\
& =\sum_{N=0}^{\infty} \sum_{\substack{\left\{n_{k}\right\} \\
\sum n_{k}=N}} \exp \left[\beta \sum_{k} n_{k}\left(\mu-\varepsilon_{k}\right)\right]
\end{aligned}
$$

$$
Z=\sum_{N=0}^{\infty} \sum_{\sum n_{n} 3} \prod_{k} \exp \left[-p n_{k}\left(\varepsilon_{k}-\mu\right)\right]
$$

Recall that we can rearrange the products \& sums as

$$
\begin{array}{rlr}
Z & =\prod_{k} \sum_{n=0}^{\infty} \exp \left[-\beta n\left(\varepsilon_{k}-\mu\right)\right] \quad \begin{array}{l}
\text { Note that if we used this same } \\
\text { process w/ Bo Itzmann statistics, } \\
\text { we would hare an additional } \\
\text { factor of } 1 / n!\text {, which would } \\
\text { give us the same answer } \\
\end{array} & =\prod_{k} \frac{1}{1-e^{-\beta\left(\varepsilon_{k}-\mu\right)}} \\
\Rightarrow \ln Z=-\sum_{k=0}^{\infty} \ln \left(1-z e^{-\beta \hbar \omega(k+1 / 2)}\right)
\end{array}
$$

