7.4) 7.4 Prove Van Leeuwen's Theorem: The phenomenon of diamagnetism does not exist in classical physics.

The following hints may be helpful:
(a) If $\mathscr{H}\left(\mathbf{p}_{1}, \ldots, \mathbf{p}_{N} ; \mathbf{q}_{1}, \ldots, \mathbf{q}_{N}\right)$ is the Hamiltonian of a system of charged particles in the absence of an external magnetic field, then $\mathscr{H}\left[\mathbf{p}_{1}-(e / c) \mathbf{A}_{1}, \ldots, \mathbf{p}_{N}-(e / c) \mathbf{A}_{N}\right.$; $\mathbf{q}_{1}, \ldots, \mathbf{q}_{N}$ ] is the Hamiltonian of the same system in the presence of an external magnetic field $\mathbf{H}=\nabla \times \mathbf{A}$, where $\mathbf{A}_{i}$ is the value of $\mathbf{A}$ at the position $\mathbf{q}_{i}$.
(b) The induced magnetization of the system along the direction of $H$ is given by

$$
M=\left\langle-\frac{\partial \mathscr{H}}{\partial H}\right\rangle=k T \frac{\partial}{\partial H} \log Q_{N}
$$

where $\mathscr{H}$ is the Hamiltonian in the presence of $\mathbf{H}, H=|\mathbf{H}|$, and $Q_{N}$ is the partition function of the system in the presence of $\mathbf{H}$.
From hint (b), we see that the induced magnetization ultimately depends on the $\log$ of the partition function \& it's derivative with respect to the magnetic field $\bar{H}$.
Therefore we need to demonstrate that, classically, $Q_{N}$ is not a function of $H$, even when the Hamiltonian is. In general, $Q_{N}$ is given by

$$
Q_{N}=\frac{1}{\omega!h^{3 N}} \int d^{3 N} p \int d^{3 N} q e^{-\beta d t}
$$

w) $\mathcal{J f}=$ Hamiltonian

In the presence of an external magnetic field $\vec{H}=\vec{\nabla} \times \vec{A}$, where $\vec{A}$ is the magnetic vector potential, we have

$$
\mathcal{H}(\vec{p}, \vec{q}) \longrightarrow \mathcal{H}\left(\vec{p}-\frac{e}{c} \vec{A}, \vec{q}\right)
$$

Therefore he see that the field merry shifts the components of the momenta. We can define a shifted momenta

$$
\begin{aligned}
& \vec{p} \rightarrow \vec{p}^{\prime}=\vec{p}-\frac{e}{c} \vec{A} \\
\Rightarrow & \mathcal{C}\left(\vec{p}-\frac{e}{c} \vec{A}, \vec{q}\right) \rightarrow \mathcal{H}^{\prime}\left(\vec{p}^{\prime}, \vec{q}\right)
\end{aligned}
$$

Since he are integrating each component of the momenta from $-\infty$ to $\infty$, shifting to $\vec{p}^{\prime}$ does not change the limits of integration

As a result

$$
Q_{W}=\frac{1}{N \cdot h^{3 N}} \int d^{3} p^{\prime} \int d^{3} q e^{-\beta C^{\prime}\left(\vec{p}^{\prime}, \vec{q}\right)}
$$

Which is indistinguishable from the partition function in the absence of an external magnetic field. Thenfor, according, fo classical statistical mechanics, even in the presence of an external field $\frac{\underset{H}{ }}{}$

$$
M=\left\langle-\frac{\partial \mathcal{A}}{\partial H}\right\rangle=k T \frac{\partial}{\partial H} \ln Q_{N}=0
$$

Then is no diamagnetson in classical SM
Why?. Diamagnetism is the result of electrons expenanang a torque from the magnetic field, which changes their magnetic moments/ angular momenta. However, in classical mechanics, these changes cancel out because the angular momenta of elections can take on any value. H's only in quantum mechanics, when me restrict the valines of the angular momenta do ne see diamajuetic effects.

Great resource for this:
http://www.feynmanlectures.caltech.edu/II_34.html
7.5) 7.5 Langevin's Theory of Paramagnetism. Consider a system of $N$ atoms, each of which has an intrinsic magnetic moment of magnitude $\mu$. The Hamiltonian in the presence of an external magnetic field $\mathbf{H}$ is

$$
\mathscr{H}(p, q)-\mu H \sum_{i=1}^{N} \cos \alpha_{i}
$$

where $\mathscr{H}(p, q)$ is the Hamiltonian of the system in the absence of an external magnetic field, and $\alpha_{i}$ is the angle between $\mathbf{H}$ and the magnetic moment of the $i$ th atom. Show that (a) The induced magnetic moment is

$$
M=N \mu\left(\operatorname{coth} \theta-\frac{1}{\theta}\right) \quad(\theta \equiv \mu H / k T)
$$

(b) The magnetic susceptibility per atom is

$$
\chi=\frac{\mu^{2}}{k T}\left(\frac{1}{\theta^{2}}-\operatorname{csch}^{2} \theta\right)
$$

(c) At high temperatures $\chi$ satisfies Curie's law, namely $\chi \propto T^{-1}$. Find the proportionality constant, which is called Curie's constant.
a) From the previous problem we saw that $M$ is given by

$$
\begin{equation*}
M=k T \frac{\partial}{\partial H} \ln Q_{N} \tag{1}
\end{equation*}
$$

Therefore ne need to compute $Q_{N}$. The partition function is given by

$$
\left.Q_{N}=C \int d^{3 N} q \int d^{3 N} p e^{-\beta(\mathcal{H}(p, 9)-\mu H} \sum_{i=1}^{N} \cos \alpha_{i}\right) \quad C \equiv \begin{gathered}
\text { constants that } \\
\text { depend on }
\end{gathered}
$$

If we choose our coordinate system so that $\vec{H}$ is aligned $w /$ the $z$-axis $\Delta$ define $\widetilde{z}_{i} \equiv \cos \alpha_{i}$

$$
\begin{aligned}
\Rightarrow Q_{N} & \left.=C \int d^{3 N} p \int d^{N} r \int d^{N} \varphi \int d \tilde{z}_{1} \cdots d \tilde{z}_{N} e^{-\beta(H(p, q)-\mu H} \sum_{i=1}^{N} \tilde{z}_{i}\right) \\
& =C\left[\int d^{3} p d r d \varphi \int_{-1}^{1} d \tilde{z} e^{-\beta H((\vec{p}, r, \varphi, \tilde{z})+\beta \mu H \tilde{z}}\right]^{N}
\end{aligned}
$$

Now he can't evaluate the integral without knowing the form of $H(p, q)$, but if we assume that the dependence of $\notin(p, q)$ on $\tilde{z}$ is much weaker than $\mu \beta H \tilde{z}$, then he can approximate that

$$
\left.\begin{array}{rl}
Q_{N} & =C\left[\int d^{3} p d r d \varphi e^{-\beta H} \int_{-1}^{1} d \tilde{z} e^{\beta \mu H} \hat{z}\right.
\end{array}\right]^{N} \text { the partition function in }
$$

So now we use Equ (1) to solve for the magnetization

$$
\begin{aligned}
M & =k T \frac{\partial}{\partial H} \ln Q_{N}=N k T \frac{\partial}{\partial H} \ln \left(\frac{2 \cosh \beta \mu H}{\beta \mu H}\right) \\
& =N k T \frac{\beta \mu H}{2 \cosh \beta \mu H}\left(\frac{2 \beta^{2} \mu^{2} H \sinh \beta \mu H-2 \beta \mu \cosh \beta \mu H}{(\beta \mu H)^{2}}\right) \\
& =N k T\left(\beta \mu \operatorname{coth} \beta \mu H-\frac{1}{H}\right) \\
M & =\mu N(\operatorname{coth} \theta-1 / \theta) \quad \theta=\mu H / k T=\beta \mu H
\end{aligned}
$$

b) The magnetic susceptibility is given by

$$
\psi=\frac{\partial m}{\partial H} \quad m \equiv \text { mean magnetization of system }
$$

For this problem $m=M / N$

$$
\begin{aligned}
\Rightarrow x & =\frac{1}{N} \frac{\partial M}{\partial H}=k T\left(\frac{1}{H^{2}}-\beta^{2} \mu^{2} \operatorname{csch}^{2} \beta \mu H\right) \\
\psi & =\frac{\mu^{2}}{k T}\left(\frac{1}{\theta^{2}}-\operatorname{csch}^{2} \theta\right)
\end{aligned}
$$

c) At high temperatures $\theta \rightarrow 0$

$$
\begin{aligned}
& \psi=\frac{\mu}{H}\left(\frac{1}{\theta}-\theta \operatorname{csch}^{2} \theta\right) \quad \text { Taylor expansion } \\
&=\frac{\mu}{H}\left[\frac{1}{\theta}-\theta\left(\frac{1}{\theta^{2}}-\frac{1}{3}+\frac{\theta^{2}}{15}+\theta\left(\theta^{4}\right)\right)\right] \quad \theta=0 \\
& \Rightarrow x \simeq \frac{\mu \theta}{3 H}=\frac{\mu^{2}}{3 k T}=\chi(T \rightarrow \infty)
\end{aligned}
$$

$\therefore$ we see Curie constant given by $C=\mu^{2} / 3 k$
7.6 Imperfect Gas. Consider a system of $N$ molecules ( $N \rightarrow \infty$ ) contained in a box of volume $V(V \rightarrow \infty)$. The Hamiltonian of the system is

$$
\begin{aligned}
\mathscr{H} & =\sum_{i=1}^{N} \frac{p_{i}^{2}}{2 m}+\sum_{i<j} v_{i j} \\
v_{i j} & =v\left(\left|\mathbf{r}_{i}-\mathbf{r}_{j}\right|\right)
\end{aligned}
$$

where $\mathbf{p}_{i}$ and $\mathbf{r}_{i}$ are, respectively, the momentum and the position of the $i$ th molecule. The intermolecular potential $v(r)$ has the qualitative form shown in the accompanying figure. Let

$$
\begin{aligned}
f_{i j} & \equiv f\left(\left|\mathbf{r}_{i}-\mathbf{r}_{j}\right|\right) \\
f(r) & \equiv e^{-\beta v(r)}-1
\end{aligned}
$$

A sketch of $f(r)$ is also shown in the same figure.
(a) Show that the equation of state of the system is

$$
\frac{P v}{k T}=1+v \frac{\partial Z(v, T)}{\partial v}
$$


where $v \equiv V / N$ and

$$
Z(v, T) \equiv \frac{1}{N} \log \left[\frac{1}{V^{N}} \int d^{3} r_{1} \cdots d^{3} r_{N} \prod_{i<j}\left(1+f_{i j}\right)\right]
$$

(b) By expanding the product $\prod\left(1+f_{i j}\right)$, show that

$$
\begin{aligned}
Z(v, T) & =\frac{1}{N} \log \left[\frac{1}{V^{N}} \int d^{3} r_{1} \cdots d^{3} r_{N}\left(1+\sum_{i<j} f_{i j}+\cdots\right)\right] \\
& =\log \left[1+\frac{N}{2 V} \int d^{3} r f(r)+\cdots\right]^{1 / N}
\end{aligned}
$$

(c) Show that at low densities, ie.,

$$
r_{0}^{3} / v \ll 1
$$

it is a good approximation to retain only the first two terms in the series appearing in the expression $Z(v, T)$. Hence the equation of state is approximately given by

$$
\frac{P v}{k T} \approx 1-\frac{1}{2 v} \int_{0}^{\infty} d r 4 \pi r^{2} f(r)
$$

The coefficient of $1 / v$ is called the second viral coefficient.
Note. (i) Retaining the first two terms in the series appearing in $Z(v, T)$ is a good approximation because $Z(v, T)$ is the logarithm of the $N$ th root of the series. The approximation is certainly invalid for the series itself
(ii) If all terms in the expansion of $\Pi\left(1+f_{i j}\right)$ were kept, we would have obtained a systematic expansion of $P v / k T$ in powers of $1 / v$. Such an expansion is known as the virial expansion.
(iii) The complete virial expansion is difficult to obtain by the method described in this problem. It is obtained in Chapter 10 via the grand canonical ensemble. See (10.27) and (10.30).

We can start by constructing the partition function based on this Hamiltonian

$$
\begin{equation*}
Q_{N}=\frac{1}{N!h^{3 N}} \int d^{3 N} p \int d^{3 N} r e^{-\beta \sum_{i=1}^{N} P^{2} / 2 m-\beta \sum_{i<j} v(|\vec{i}-\overrightarrow{-},|)} \tag{D}
\end{equation*}
$$

For this problem ne want to solve for the equation of state, which we can find by solving for the pressure.

$$
\begin{equation*}
P=-\left(\frac{\partial A}{\partial V}\right)_{N, T}=k T \frac{\partial}{\partial V} \ln Q_{N} \tag{2}
\end{equation*}
$$

Therefore, the only information that we need from Egn. (1) are the parts of ' $Q_{N}$ that depend on $V$. So we can rewrite $Q_{N}$ as

$$
\begin{aligned}
Q_{N} & =\underbrace{\left(\frac{V^{N}}{N!h^{3 N}} \int d^{3 W} p e^{-\beta \sum_{i=1}^{N} P_{i}^{2} / 2 n}\right)}\left(\frac{1}{V^{N}} \int d^{3 N} r e^{-\beta \sum_{i j j} v\left(\left|\vec{r}_{i}-\vec{r}_{j}\right|\right)}\right) \\
& \equiv Q^{i d e a l} \leftarrow \text { partition function for an ideal } \\
Q_{N}= & \frac{Q_{N}^{i d e a l}}{V^{N}} \int d^{3 N} r \prod_{i<j} e^{-\beta v\left(\left|\vec{r}_{i}-\vec{r}_{j}\right|\right)}
\end{aligned}
$$

Now defining $1+f_{i j} \equiv e^{-\beta v_{i j}} \quad w / v_{i j} \equiv v\left(\left|\vec{v}_{i}-\vec{r}_{j}\right|\right)$, ne deffre
the correction function

$$
\begin{aligned}
& \widetilde{Z} \equiv \frac{1}{V^{N}} \int d^{3 N} r \prod_{i<j}\left(1+f_{i j}\right) \\
\Rightarrow Q_{N} & =Q_{N}^{\text {ideal }} \widetilde{Z}
\end{aligned}
$$

Plugging this into Egn (2)

$$
\frac{P}{k T}=\frac{\partial}{\partial v}\left(\ln Q_{N}^{i d e a l}+\ln \tilde{Z}\right)
$$

$$
=\frac{W}{V}+\frac{\partial \ln \tilde{Z}}{\partial V}
$$

Where ne used the knowledge that $P V=$ NKT is the ideal gas k ow that ne would devin from $\frac{\partial}{\partial V} \ln Q_{N}^{i d e n}$

If we switch to the notation $v=V / N$

$$
\Rightarrow \frac{P}{k T}=\frac{1}{v}+\frac{1}{N} \frac{\partial \ln \widetilde{z}}{\partial v}
$$

Or defining the function required for the problem

$$
\begin{aligned}
& z \equiv \frac{1}{N} \ln \tilde{Z} \\
& \Rightarrow \frac{P v}{k T}=1+v \frac{\partial Z}{\partial v}
\end{aligned}
$$

b) In this part we just need to expand the product

$$
\prod_{i<j}\left(1+f_{i j}\right)=1+\sum_{i<j} f_{i j}+\sum_{i<j} \sum_{k<l} f_{i j} f_{k l}+\cdots
$$

If this expansion is not obvious, consider just 3 partides so that

$$
\begin{aligned}
\prod_{i<j}\left(1+f_{i j}\right) & =\left(1+f_{12}\right)\left(1+f_{13}\right)\left(1+f_{23}\right) \\
& =\left(1+f_{12}+f_{13}+f_{12} f_{13}\right)\left(1+f_{23}\right) \\
& =1+f_{i 2}+f_{13}+f_{23}+f_{12} f_{13}+f_{12} f_{23}+f_{13} f_{23}+f_{12} f_{13} f_{23} \\
& =1+\sum_{i<j} f_{i j}+\sum_{i<j} \sum_{k<l} f_{i j} f_{k l}+\cdots
\end{aligned}
$$

For this problem ne will focus on the first two terms

$$
\begin{aligned}
\Rightarrow Z(v, T) & =\frac{1}{N} \ln \left[\frac{1}{V^{N}}\left(\int d^{3 N} r(1)+\int d^{3 N} r \sum_{i<j} f_{i j}+\ldots\right)\right] \\
& =\ln \left[1+\frac{1}{V^{N}} \sum_{i<j} \int d^{3 N} r f_{i j}\right]^{1 / N}
\end{aligned}
$$

The remaining integral only depends on 2 of $N$ particles (particles $i$ \& $j$ ) therefore ne can trivially integrate over $d^{3 N-2} r$

$$
Z(v, T)=\ln \left[1+\frac{1}{V^{N}} \sum_{k j} v^{N-2} \int d^{3} r_{i} d^{3} r_{j} f_{i j}\right]^{1 / N}
$$

We can rewrite the integral over the positions of particle i \& $j$ by defining the separation vector

$$
\begin{gathered}
\vec{r}=\vec{r}_{i}-\vec{r}_{j} \quad w \left\lvert\, \quad \frac{\partial \vec{r}_{r}}{\partial \vec{r}_{i}}=1\right. \\
\Rightarrow \int d^{3} r_{i} d^{3} r_{j} f\left(\left|\vec{r}_{i}-\dot{r}_{j}\right|\right)=\int d^{3} r_{j} d^{3} r f(|\vec{r}|)
\end{gathered}
$$

We see that the integrand on longer depends on $\int d^{3} r_{j}$ so we can evaluate this immediately

$$
\Rightarrow Z(v, T)=\ln \left[1+\frac{1}{V} \sum_{i<j} \int d^{3} r f(r)+\ldots\right]^{1 / N}
$$

The sum $\sum_{i, j}$ will essentially give us $N(N-1) / 2$ identical copies of the integral. $i j$ Approximating that $N-1=N$ for $N \gg 1$, we have

$$
Z(v, T)=\ln \left[1+\frac{N^{2}}{2 V} \int d^{3} r f(r)+\cdots\right]^{1 / N}
$$

Despite what the book has written, I think this is the right answer.
C) When willing with low densities, he can perform the virial expansion of the equation of state

$$
\frac{P}{p k T}=1+B_{2}(T) \rho+B_{3}(T) \rho^{2}+\cdots
$$

Where $\rho=\frac{1}{v} \ll 1$ \& the coefficients $B_{i}(T)$ are known as viral coefficunts. For ideal gases, when intermolecular interactions are dismissed $B_{i}(T)=0$. For low-densitios we only need to retain the
first correction, $B_{2}(T)$. first correction, $B_{2}(T)$.
We see that our solution to part (b) is this same expansion (times N), but $m$ hank taken the $\log$ of this expansion. Therefore, since ne ar dicing with low-densitris, we only wed to keep the first tho terms, leading to

$$
Z(v, T) \simeq \frac{1}{w}\left(\frac{N^{2}}{2 v} \int d^{3} r f(r)\right)
$$

Or recognizing that $f$ is only a function of $|\vec{r}|$, we further simplify to

$$
\begin{aligned}
& Z(v, T)=\frac{1}{2 v} \int_{0}^{\infty} 4 \pi r^{2} f(r) d r \\
\Rightarrow & \frac{P v}{k T}=1+v \frac{\partial}{\partial v}\left(\frac{1}{2 v} \int_{0}^{\infty} d r 4 \pi r^{2} f(r)\right) \\
\Rightarrow & \frac{P v}{k T}=1-\frac{1}{2 v} \int_{0}^{\infty} d r 4 \pi r^{2} f(r)
\end{aligned}
$$

Or in the language of the viral expansion

$$
\frac{P}{\rho k T}=1+B_{2}(T) p \quad \omega / B_{2}(T)=-2 \pi \int_{0}^{\infty} d r r^{2} f(r)
$$

