HW \#5 Solutions
Problems $6.2,6.3,6.4$
6.2) 6.2 Let the "uniform" ensemble of energy E be defined as the ensemble of all systems of the given type with energy less than E. The equivalence between (6.29) and (6.27) means that we should obtain the same thermodynamic functions from the "uniform" ensemble of energy E as from the microcanonical ensemble of energy E. In particular, the internal energy is E in both ensembles. Explain why this seemingly paradoxical result is true.

As we add more energy to a system, there becomes an increasing number of ways that we can divide this energy across the system. As a quick estimate, Consider the number of ways ne can organize E units of energy (cohere E is an integer) is given by E !. In thermodynannies, we expect E to be large (recall $U=\frac{3}{2}$ NWT and N is large), therefore, applying Stirling's approximation, we see that the number of ways we can organize E nits of energy goes like

$$
\sim E^{E} e^{-E} \sim E^{E} \quad \text { for large } E
$$

Therefore even small increases in E will lead to exponential growth. Because of this exponential growth, even if we increase E by 1, we see that

$$
\frac{(E+1))^{E+1}}{E^{E}}=E\left(1+\frac{1}{E}\right)^{E+1}=E \exp \left[(E+1) \ln \left(1+\frac{1}{E}\right)\right] \simeq E \exp \left[1+\frac{1}{E}\right] \sim E \gg 1
$$

Therefore even small increasis had to large growth. Therefore, even if ne consider all of the ways we can divide units of energy $E^{\prime}<E$, they are still subdominant to the number of ways we can organize E units of energy.

$$
\frac{\sum_{i=1}^{E+1}(E+1-i)^{E+1-i}}{(E+1)^{E+1}}=\sum_{i=1}^{E+1} E^{-i}\left(1+\frac{1-i}{E}\right)^{E+1-i}=\sum_{x=0}^{E} E^{x-E-1}\left(\frac{x}{E}\right)^{x}=\frac{1}{E^{E+1}} \sum_{x=0}^{E} x^{x}
$$

Plugging in large values of E to the final expression, you would find that this is $\ll 1$.
Now microstates in ensemble represent different ways energy can Le used/ organized/dividid-up among the system. Thenfore, based on the analysis above, most of the microstates will have an energy E, because these microstates will overwhelmingly outnumber the microstates of states w/ energies kess than E.

Ultimately, whichever ensemble we use will lead to the same result, because in both instanas, most miccostates han energy E \& \therefore Ereprosurts the internal energy of the actual thermodynamic system.
6.3)
6.3 Consider a system of N free particles in which the energy of each particle can assume two and only two distinct values, 0 and $E(E>0)$. Denote by n_{0} and n_{1} the occupation numbers of the energy level 0 and E, respectively. The total energy of the system is U.
(a) Find the entropy of such a system.
(b) Find the most probable values of n_{0} and n_{1}, and find the mean square fluctuations of these quantities.
(c) Find the temperature as a function of U, and show that it can be negative.
(d) What happens when a system of negative temperature is allowed to exchange heat with a system of positive temperature?

Reference. N. F. Ramsey, Phys. Rev. 103, 20 (1956).
(a) This is similar to the problems we tacked in Problem Session 4. In this case ne have particles that can take energies $E_{j} \quad n_{j}=$ occupation number

$$
E_{j}=j E, j=0,1 ; U=\sum_{j=0}^{1} n_{j} \tilde{E}_{j} ; N=\sum_{j=0}^{1} n_{j} \quad \text { energy level } j
$$

To find the entropy we want to find the humber of microstates in which N particle can be arranged in the two energy states to satisfy a total energy U for the system. Only particles in the \vec{E}_{1} state contribute to U.

$$
\Rightarrow n_{1}=U / \widetilde{E}_{1}=U / E
$$

The number of micristates can be calculated by determining the amount of ways we can split up \cup among the N particles. But only n, particles contribute to the energy; therefore, alternatively we can think of the number of microstates as the number of ways we can arrange N pattides into a subset of n_{1} particles, given by $n_{1}=U / E$. This is simply given by

$$
\Omega=\binom{N}{n_{1}}=\frac{N!}{(N-\nu / t)!\nu / E!}
$$

$\Omega=\#$ of microstates
$\binom{n}{k}=$ binomial coefficient
Taking the natural $\log \&$ applying Stirling's approximation of $\ln n!\geq n \ln n-n$

$$
\begin{aligned}
S & \simeq k[N \ln N-N-(N-U / E) \ln (N-U / E)+N-U / E-U / E \ln U / E+Y / E] \\
& =k[N \ln N-(N-U / E) \ln (N-U / E)-U / E \ln U / E]
\end{aligned}
$$

or defining $\alpha \equiv U / N E$

$$
S \simeq N k\left[\ln \left(\frac{1}{1-\alpha}\right)+\alpha \ln \left(\frac{1-\alpha}{\alpha}\right)\right]
$$

b) Recall that the mean square fluctuations of a vanable x are

$$
\left\langle(x-\bar{x})^{2}\right\rangle=\left\langle x^{2}\right\rangle+\bar{x}^{2}-2 \bar{x}\langle x\rangle
$$

Where \bar{x} is the average value \& $\langle x\rangle$ is the most probable value of x and $\left\langle x^{2}\right\rangle$ is the most probable value of x^{2}. In statistical mechanics we understand the average as the most probable value, so that

$$
\left\langle(x-\bar{x})^{2}\right\rangle=\left\langle x^{2}\right\rangle-\langle x\rangle^{2}
$$

For this system, given energy U, then n_{1} must be equal to U / E. Therefore, even when considering an ensemble of these systems, all system must have $n_{1}=U / E \& n_{0}=N-U / E$ given energy U. Fluctuations can only exist if there is some uncertainty in U.

$$
\begin{aligned}
\therefore\left\langle\left(n_{1}-\bar{n}_{1}\right)^{2}\right\rangle & =\left[\left\langle U^{2}\right\rangle-\langle U\rangle^{2}\right] / E^{2} \\
\left\langle\left(n_{0}-\bar{n}_{0}\right)^{2}\right\rangle & =\left[\left\langle(N-U / E)^{2}\right\rangle-\langle N-U / E\rangle^{2}\right] \\
& =\left[\left.\right|^{2}-2 N\langle U\rangle / E+\left\langle U^{2}\right\rangle / E^{2}-N^{2}-\langle U\rangle^{2} / E^{2}+2 N\langle U\rangle \in \in\right] \\
& =\left[\left\langle U^{2}\right\rangle-\langle U\rangle^{2}\right] / E^{2}
\end{aligned}
$$

\therefore the mean square fluctuations of both $n_{0} \& n_{1}$ depend on the mean square fluctuations of U.
C) From the microcanorical ensemble framework, the temperatuk is given by

$$
\frac{1}{T}=\left(\frac{\partial S}{\partial u}\right)_{V}=\frac{d \alpha}{d u}\left(\frac{\partial S}{\partial \alpha}\right)=\frac{d \alpha}{d u}\left[\frac{N k}{1-\alpha}-\frac{N k \alpha}{1-\alpha}-\frac{N k \alpha}{\alpha}+N k \ln \left(\frac{1-\alpha}{\alpha}\right)\right]
$$

Note that the first 3 terms cancel \& $d \alpha / d u=1 / N E$

$$
\begin{aligned}
\Rightarrow \frac{1}{T}=\frac{K}{E} \ln \left(\frac{N E}{U}-1\right) & \\
& \begin{array}{l}
\text { We see that this is negative iffy } \\
\\
\\
\\
\\
\\
\\
\hline \text { sing } N
\end{array} \quad N=n_{0}+n_{1} \& \quad U=E n_{1} \\
\Rightarrow & \frac{n_{0}+n_{1}}{2}<n_{1}<n_{0}+n_{1}
\end{aligned}
$$

Obviously the upper bound is always satisfied \therefore the defining criteria is when

$$
\frac{n_{0}+n_{1}}{2}<n_{1} \quad \Rightarrow \quad n_{0}<n_{1}
$$

d) I thine it is helpful to first examine the types of bounds a negative temperature puts on the entropy. So consider when $U=j N E$ where $j \in\left[\frac{1}{2}, 1\right] \Rightarrow \alpha=j$

$$
\Rightarrow \frac{S}{N k}=\ln \left(\frac{1}{1-j}\right)+j \ln \left(\frac{1-j}{j}\right)
$$

Therefore as j increases from $\frac{1}{2} \rightarrow 1$ (ie. as we increase the energy of the system) we find that
$\frac{\Delta S}{N k}<0 \quad \leftarrow$ This can be seen by plotting j from $1 / 2 \rightarrow 1$
In fact if we look C the critical points of $S(j)$

$$
\Rightarrow 0=(1-j)+\ln \left(\frac{1-j}{j}\right)-\frac{j^{2}}{1-j} \Rightarrow j=1 / 2
$$

By plotting S, we indeed see that S is maximized when $U=\frac{N E}{2}$, ie. when $n_{0}=n_{1}$. Therefore negative temperature describes a system that decreases in entropy as you pump energy into the system. In this case, this effect is caused by bounding the energy.
Put in contact with a resevoir of positive temperature, the systems will reach equilibrium by maximising their entropy, $d s \geq 0$
Since $\quad d Q=T d S \quad \& \quad T<0$ w/ $d S \geq 0$
We see that heat can only flow from the system. Therefore me interpret the negative temperature system as "hotter."
6.4) 6.4 Using the corrected entropy formula (6.62), work out the entropy of mixing for the case of different gases and for the case of identical gases, thus showing explicitly that there is no Gibbs paradox.

Let's begin by writing Egn (6.62) in the form

$$
\begin{array}{rlrl}
\frac{S}{k} & =N \log \left[\frac{V}{N}\left(\frac{3 k T}{2}\right)^{3 / 2}\right]+\frac{3}{2} N\left(\frac{5}{3}+\log \frac{4 \pi m}{3 h^{2}}\right) \tag{6.62}\\
& =N \log \left(\frac{V}{N} u^{3 / 2}\right)+N S_{0} & S_{0} \equiv \frac{3}{2}\left(\frac{5}{3}+\log \frac{4 \pi m}{3 h^{2}}\right) \\
& u & =\frac{3}{2} k T
\end{array}
$$

Where u \& S_{0} are quantities that do not depend on N or V. I believe that, in this problem, when asked for the entropy of mixing, Huang is asking for the change in entropy due to mixing the gases.
Therefore, assume I have two gases. The first gas has NI partides that occupy V_{1} volume, while the second gas has N_{2} particles that occupy a volume V_{2}. If the gases are kept separate, their combined entropy is just the sum of the separate entropy for each gas:
recall that S_{0} depends

$$
\frac{S}{k}=N_{1} \log \left(\frac{v_{1}}{N_{1}} u^{3 / 2}\right)+N_{2} \log \left(\frac{v_{2}}{N_{2}} u^{3 / 2}\right)+N_{1} s_{0}^{(1)}+N_{2} s_{0}^{(2)}
$$ on mass of individual

particles, sol particles, so $\Rightarrow S_{0}^{(i)} \equiv \begin{gathered}S_{0} \text { using mass } \\ \text { ot panics is } \\ \text { gas i } i) .\end{gathered}$
Now, if we let the two the gases $m i x$, we can calculate the total entropy of the system by summing the entropy of each gas, but we must now take into consideration that each gas now occuppies a volume
$V_{1}+V_{2}$

$$
\begin{aligned}
& \Rightarrow \frac{S_{\text {mix }}}{k}=N_{1} \log \left(\frac{V_{1}+V_{2}}{N_{1}} u^{3 / 2}\right)+N_{2} \log \left(\frac{v_{1} V_{2}}{N_{2}} u^{3 / 2}\right)+N_{1} S_{0}^{(1)}+N_{2} S_{0}^{(2)} \\
& \Rightarrow \frac{\Delta S}{k}=\frac{S_{\text {mix }}-S}{k}=N_{1} \log \left(\frac{V_{1}+V_{2}}{v_{1}}\right)+N_{2} \log \left(\frac{V_{1}+V_{2}}{V_{2}}\right)
\end{aligned}
$$

Which we can rewrite as $\Delta S=N_{1} k \log \left(V / V_{1}\right)+N_{2} k \log \left(V / V_{2}\right) \quad V \equiv V_{1}+V_{2}$
If we are dealing with identical gases at the same temperature \& pressure, then the ratio $N_{1} N_{1}=N_{2} / N_{2}=N_{1}+N_{2} / N_{2}$ is constant. Additionally, once the gases begin to mix, we have to treat this mixtun as 1 gesswith $N=N_{1}+N_{2}$ partcus in a volume V $\Rightarrow S_{\text {mix }}=N k \log \left(\frac{v}{N} u^{3 / 2}\right)+N k s_{0}$ due to the
$\Rightarrow \Delta S=0 \quad$ just as we would expect. Therefore then is no Gibbs paradox in this instance.

