HW #2 Solutions

2.1

2.1 What is the boiling point of water on Mt. Evans, Colorado, where the atmospheric pressure is two-thirds that at sea level?

 $\frac{dP}{dT} = \frac{l}{T\Delta v}$

L: specific latent heat of vaporitation P: pressure P: temp Av: volumes it the are e AV : difference in the specific volumes of the gos & liguid

Problems:

2.1,2.3,2.4

We are trying to get a rough estimate of the change in boiling point so we will need to make some simplifying assumptions. I'm going to assume that I is about constant as a function of temperature and that the specific volume of vapor is so much larger than the specific volume of water that $\Delta v \simeq V_{uapor}$. I will also approximate the water upper as an ideal gas

=>
$$\Delta v = \frac{V_{idual}}{M_{vapor}} = \frac{KRT/P}{KM_{Ho}} + \frac{\mu_{Ho}}{\mu_{Ho}} = \frac{\mu_{Ho}}{\mu_{Ho}}$$

So that the CC equation can be rewritten as

$$\frac{dP}{P} = \frac{dT}{T^2} \frac{\lambda_{\mu_{H_20}}}{R}$$

Integrating from conditions at sea level to conditions at the top of Mt. Evans

=> ln Pp = LMHDO
$$\left(\frac{1}{T_0} - \frac{1}{T}\right)$$
 T, P: building temp & standard pressure
C Mt. Evans
T P: building temp & standard pressure

Solving for T

$$\Rightarrow \frac{\mu_{H_0}}{R} = T\left(\frac{\lambda_{\mu_{H_0}}}{RT_0} - \lambda_0^{P}\right)$$
$$\Rightarrow T = \left(\frac{\lambda_{\mu_{H_0}}}{R}\right)\left(\frac{\lambda_{\mu_{H_0}}}{RT_0} - \lambda_0^{P}\right)^{-1}$$

We can look up all of the quantities on the LHS, while also knowing that P/B = 2/3 as stated by the problem. l = 2265 kS/kg = 2.265 kS/g $R = 8.314(\times10^{-3} \text{ kg} \text{ kmol}^{-1})$ $T = 362 \text{ K} = 88^{\circ}\text{C}$ $M_{420} = 18 \text{ g/mol}$ $T_{0} = 373 \text{ K} = 100^{\circ}\text{C}$ $T_{0} = 373 \text{ K} = 100^{\circ}\text{C}$

Rule of Humb is that you love about 0.5°C per 500 ft.

e sea lever

2.3 A cloud chamber contains water vapor at its equilibrium vapor pressure $P_{\infty}(T_0)$ corresponding to an absolute temperature T_0 . Assume that

- (i) the water vapor may be treated as an ideal gas;
- (ii) the specific volume of water may be neglected compared to that of the vapor;
- (iii) the latent heat l of condensation and $\gamma = c_P/c_V$ may be taken to be constants: $l = 540 \text{ cal/g}, \gamma = \frac{3}{2}$.

(a) Calculate the equilibrium vapor pressure $P_{\infty}(T)$ as a function of the absolute temperature T.

(b) The water vapor is expanded adiabatically until the temperature is T, $T < T_0$. Assume the vapor is now supersaturated. If a small number of droplets of water is formed (catalyzed, e.g., by the presence of ions produced by the passage of an α particle), what is the equilibrium radius of these droplets?

SOME APPLICATIONS OF THERMODYNAMICS

51

 (\boldsymbol{c}) In the approximations considered, does adiabatic expansion always lead to supersaturation?

a) This problem asks me to make the same set of assumptions as problem (2.1); therefore I'll just start with the integrated form

$$ln P_{P_0} = \frac{L\mu}{R} \left(\frac{1}{T_0} - \frac{1}{T} \right)$$

$$P = \alpha e^{-\frac{L\mu}{RT}} \quad \text{when } \alpha = P_0 e^{\frac{L\mu}{RT}}$$

The difference this time is that our limits of integration have changed and thurkon P, Po, T, & To refer to different quantities in this problem. To & To are just some cubitrary initial temperature & pressure configuration, which essentially form a constant of integration, which I define as a. For this problem P corresponds w/ Pro(T), which is are solving for.

$$\Rightarrow P_{\infty}(T) = \alpha e^{-\lambda \mu/pT}$$

 A water droplet will only remain in equilibrium with the water vapor when
 Praper = Pr(T) = Pa(T) e
 ^{2 om/p}(^{1/kTr)}
 (Huang Eqn. 2.25)
 F: surface tension coefficient
 r: radius of droplet
 m: mass of gas molecule
 p: density of gas
 So I will rewrite this in terms of the constants I've already been using
 and define
 a = 2 0 µ/PR
 B b= lµ/R
 Praper = Ke
 Praper = Ke

Solving for r we find

$$T_{ln}P_{npar/\alpha} = \frac{a}{r} - b$$

$$\Rightarrow r = a(T_{ln}P_{npar/\alpha} + b)^{-1}$$
We benow that the vapor was adiabatically expanded to a temperature
T : we just view to determine P_{npar} . We can determine this by taking
advantage of

$$PV^{r} = const \quad for adiabatic expansions$$
and using $V = \frac{NkT}{P}$

$$\Rightarrow P^{1-r}T^{r} = const$$

$$\Rightarrow PT^{-r/(r-1)} = const$$
So we find that $P_{o}(T_{o})T_{o}^{-r/(r-1)} = P_{napr}T^{-r/h-1}$)
Since the gas initially has a temperature To and normal (saturated) vapor
pressure $Po(T_{o})$.

$$\Rightarrow P_{npar} = P_{o}(T_{o}) \left(\frac{T}{T_{o}}\right)^{r}r_{i} = \alpha \left[\frac{T}{T_{o}} b + b + \frac{T}{r-1} ln(\frac{T}{T_{o}})T^{-1}\right]$$

$$u = a \left[\frac{T}{T_{o}} b + b + \frac{T}{r-1} ln(\frac{T}{T_{o}})T^{-1}\right]$$

$$u' = a = \frac{R}{log} - \frac{R}{log}$$

of the vapor is greater than its equilibrium vapor pressure. It's a state of unstable equilibrium - meaning that a small perturbation to the system will lead to an increased rate of condensation until the system reaches a stable equilibrium (when the pressure falls to the equilibrium vapor pressure).

So what does Huang mean by supersaturation? Well Huang pictures it as a state in (P,V) space that does not lie on the path of an isothermal expansion at temperature T. If you look @ Hvang's solution to problem 2.3(c), you'll notice that he tries to use this understanding of supersaturation to "prove" that yes supersaturation is guaranteed as a result of adiabatic expansion under the publics's assumptions.

His argument is fairly indecipheralde, because he uses terms he doesn't really define, but it goes something like this:

An adiabatic expansion will lead to the gas cooling to a temperature T. Therefore let's consider the isothermal paths for constant T& To in (P,V) space:

The system starts @ point A with To, Vo & Poo(To) defining the system. Then Huang states that we can clearly see that $V > V_r$ b/c of our assumption of the form of $P_r(T)$, $P_ro(T)$, & using the ideal opes law.

But he never proves that the state has to pass through point B under the adiabatic transformation. In short, my interpretation of Huang's solution is yes, because it does. Maybe someone clse has deciphered it.

Here is my alternative approach.

Supersaturation requires that the new pressure after an advatatic expansion is greater than Poo(T), assuming the expansion leads to the system cooling to a temp T

$$\frac{P_{ad}(T)}{P_{ad}(T)} > 1 \quad \text{where } P_{ad} = P_{a}(T_{o}) \left(\frac{I}{T_{o}} \right)^{V_{ad}}$$

due to adiabatic expansion

From our assumptions, we determined Ps(T')~ e^{-b/T' w/ b= 4u/R

$$\frac{P_{cd}}{P_{s}} = \frac{e^{-b/\tau_{o}}}{e^{-b/\tau}} \left(\frac{\Gamma}{T_{o}}\right)^{\frac{3}{2}r-1} = e^{-b/\tau_{o}(\tau_{o}(\tau_{o})} \left(\frac{\Gamma}{T_{o}}\right)^{\frac{3}{2}r-1} > 1$$

Unfortunately this does not quite give us the answer since the exponential term is greater than 1, but the power term is not. So let's rearrange & take the log

$$\Rightarrow e^{h_{T_0}(T_0+T_1)} > \left(\frac{T_0}{T_0}\right)^{2/T_{T-1}}$$

$$\stackrel{l}{=} \left(\frac{T_0}{T_0}-1\right) > \frac{2}{T_{-1}} lm\left(\frac{T_0}{T_0}\right)$$

$$avaulib: \quad v \in T_0-T \quad \Rightarrow T/T_0 = b$$

Define the quantity $X = \frac{1-1}{T_0} \Rightarrow T_T = 1-X$ $\Rightarrow \frac{b}{T_0} \left(\frac{1}{1-X} - 1\right) > \frac{c}{2-1} \ln(1-X)$

Both can be expanded in powers of x since X<1 & the radius of convergence is 1X/<1 for both somes. Then we can compare a order by order basis!

$$\Rightarrow \frac{b}{T_0} \left(\chi + \chi^2 + \chi^3 + \chi^4 + \dots \right) > \frac{r}{r_1} \left(\chi + \frac{\chi^2}{2} + \frac{\chi^3}{3} + \frac{\chi^4}{4} + \dots \right)$$
Therefore adiabatic expansion will definitely lead to Supersaturation if the following condition is satisfied:

$$\frac{b}{T_0} > \frac{r}{r_{-1}}$$
Recall that $r = \frac{3}{2}$ and $b = \frac{2\mu/R}{r} \approx 4900$ K for water vapor. Since the critical point of water is below 700 K, then it is safe to say that this is satisfied by any reasonable water vapor system.
Therefore, yes, under our assumptions, Adiabatic expansion always leads to supersaturation.

2.4
2.4 Show that the heat capacity at constant volume
$$C_{\nu}$$
 of a Van der Waals gas is a function of the temperature alone.
We know that C_{ν} is given by $C_{\nu} = \left(\frac{\partial U}{\partial T}\right)_{\nu}$.
Therefore we need to obtain a form for the internal energy of the Van der Waals gas as a function of temperature T & volume V.
A Van der Waals gas of a function of temperature T & volume V.
A Van der Waals gas of the equation of state.
 $P = \frac{nRT}{V-b} - \frac{\Delta}{V^2}$ (1)
From the first law of thermodynamics we know that
 $P = -\left(\frac{\partial U}{\partial V}\right)_{S}$.
however it is not clear how to hold S constant in Eqn (1). Therefore
we can recall the more accessible relation between pressure R
the Helmholtz potential $A = U-TS$.
 $\Rightarrow dA = -SdT - PdV$ or $P = -\left(\frac{\partial A}{\partial V}\right)_{\Gamma}$, $S = -\left(\frac{\partial A}{\partial T}\right)_{V}$.
Integrating at a constant temperature from initial volume Vs to find volume V
 $\Rightarrow A = -nRT \ln\left(\frac{V-b}{V-U}\right) - \frac{aV_0}{V} + C(T)$.
where (CT) is an integration constant that can depend on T, since T was
taken to be a constant during integration. The exact expression for CCTS
is not important since we only we to deconstruct that C_V only
depends on T, not how if depends on T.
Since $U = A + TS$, we must also determine the form of S
 $\Rightarrow S = -\left(\frac{\partial A}{\partial T}\right)_{V} = nR \ln\left(\frac{V-b}{V-b}\right) - C'(T)$.
where a (') denotes differentiation with respect to temperature.

 $\Rightarrow U = C(T) - \frac{aV_{a}}{v} - TC'(T)$

Now we can finally solve for C_V $\Rightarrow C_V = -TC''(T)$ which clearly depends on T & not V.