
Problems :

HW # 2 Solutions 2.1.23 , 2.4

2.1

For a liquid → gas phase transition we can start  with the
Clausi  us - Clapeynn equation :

l :  specific latent heat  of  vaporizationdP_ = I P : pressure
gv :

difference  in the specific
AT TLW T : temp volumes  of the gas  & liquid

We  are trying to get  a  rough estimate  of the change in boiling point  so  we

will need to  Malie some  simplifying assumptions .
I'M going to  assume that

l is  about  constant  as  a function  of temperature  and that the specific  volume  of

Vapor  is  So  much larger than the specific  volume  of  water that A  v =  Vapor .

1

will also  approximate the water  vapor as  an  ideal gas
⇒ LW  = Vided =

XRT# µ no :  molar  mass  of
- water

M
vapor XMHZO

So that  the CC equation  can be rewritten  as

9¥ = ¥2 1M¥
R

Integrating from  conditions at sea level to  conditions  at the top  of Mt
, Evans

⇒ lntkpo = ltfftuo ( ¥ - ⇒
IP :

bgtjgt.to#an&s
standard pressure

boiling temp & Standard pressure

Solving for T FB :

e sea levee

⇒ LEE = T (Many - luttpo )
⇒ T= ( that ) ( the - ln%oT

'

We  can look up  all of the quantities on the LHS
,

while also knowing that

TTB = 2/3 as Stated by the problem .

l= 2265 kJ/hg= 2.265

kJ/gR=  8.314×1-0-3is knnat ' }T= 362 k = 880C

µ not 18 glmoi
To = 373 k a 100°C [ This  is actually close to the real-life

Value :  ~  85C @ 14,500 ft
.

Rule  of thumb  is that you
lose  about  0.50C

per  500  ft .



2.3

:)
This problem asks me to make the same set  of  assumptions as

problem ( 2. D ; therefore I 'll just start  with the integrated form

lnttpo = # ( t.tt )

p = a ETYRT when of PoetHRTO

The difference this time  Is that  our limits  of  integration ban changed and

therefore P
, POT ,

& To  refer to different quantities in this problem .

to & To  are just  Some  arbitrary initial temperature & pressure configuration ,

which  essentially form  a  constant Of  integration ,
which  

I
define  as a

.

For
this problem P corresponds wl Pact ,  which  we  are  solving for .

⇒ Pa ( T ) = the LMRT

b) A  water droplet will only remain  in  equilibrium  with the water vapor
When

Rapa = Pdt ) = Pact )e2%% " '
( Huang Eqn . 2.25 )

f : Surface tension  coefficient ✓ :  radius  of droplet
m :  mass  of gas  molecule

p
: density of gas

So I will rewrite this  in terms  of the constants I've  already been Using
and define a ± 2Tµ/pR & BE lµ/R

⇒ p
vapor

= Xe
( % - b) 1T



Solving for  r  we find

Therapy = of - b

⇒ r =  a ( Tlnpvaporld

+
b )

"

We know that the Vapor  was  adiabatic ally expanded to  a temperature
T :  we just need to determine Pvapor .

We  can determine thus by taking
advantage of

PV 8
= const for adiabatic  expansions

and using V = NIT

:
 → ptrtr =  oonst

⇒ PT
' % 's =  oonst

So  we find that Pa ( To )Tj% ' ' = Rap←T%' ' '

Since the gas initially has  a temperature To  and  normal ( saturated ) vapor

pressure P&( To ) .

⇒ Rap .r= Pact ) ( ¥ Mri = xE%(t⇒%i
Or Solving for the radios

r= a #lnebtto ( FF '

]tbT
'

=
 a

ftp.btb

+ Film (F) T ]
"

wiba.pe/2r
r = a [ b ( I - F) + TIME ) ]

"

±=z÷n=E÷m

C) So this might be a good time to  stop and think what  is actually
going on here and what does Huang mean by Super  saturation?

Super
saturation for  a  vapor  is a state in Which the partial pressure

of the vapor  is greater than  its equilibrium  vapor pressure . It's  a  state

of  

unstableequilibrium
-

meaning that  a  small

perturbation
to  the system

will lead to  an  increased rate  of  condensation  untilthe system  reaches a  Stableequilibrium( when the pressure falls to the equilibrium  vapor
pressured

.

So  what does Huang mean by Super  saturation ? Well Huang pictures  it

as a State  in ( P
,

V ) space that does not lie on the path of  an  isothermal

expansion at temperature T
.



If you look @ Huang 's solution to problem 2.3 (c)
, you'll notice that he tries to

Use this understanding of  Super saturation to
"

prove
"

that  y# Super saturation  is guaranteed
as  a  result  of  adiabatic  expansion  under the problem 's  assumptions .

His  argument is fairly indecipherable ,
because he uses terms he doesn't  really define

,

but  it goes  something like this :

An adiabatic  expansion  will lead to the gas  cooling to  a temperature T
.

Therefore

let's  Consider the isothermal paths for  constant T & To  in ( P
,

V ) space :

n

The system starts @ point A  with

Pako ) . - - .↳
To

,
Vo & Pa ( I ) defining the system .

:

To Then Huang States that  we cantear#÷¥==¥:#,

clearly see that V ' Vrbk" of  our  assumption  of the form
' ! '

)
of  Pr G)

,
Pa LT )

,

& using the
VOVRV

ideal
gas law .

But he never proves that the state he to pass through point B under the
adiabatic transformation . In  Short

, my interpretation  of Huang 's  solution  Is  Yes , because

it does , Maybe someone else has deciphered it .

Here is  my alternative  approach :

Super saturation requires that the new pressure after  an adiabatic  expansion  is

greater than PACT )
, assuming the expansion heads to the system  cooling to  a temp T

→ T.gg#g > 1 where Pad = Pact ) (F) % I

due to adiabatic  expansion

From  our  assumptions
,

we  determined Ps ( t
'

) ~  e- bk '

w 1 b = lµ/R

⇒ PI = ¥10(F)
% '  

=

e%dt¥DFj%
'

> 1
To

Unfortunately this does  not quite give Us the answer  since the exponential term  is greater than

1
,

but the power term  is  not
.

So let's  rearrange & take the log
⇒ ebkoctok - D

> (I÷)% - i

¥l¥ - i ) > Fin #
Define the quantity ×= off ⇒ Ito = t ×

⇒ bt÷( Ex - i ) > ÷, lnltx )

Both can be expanded in powers of  X since  K 1 & the radius  of  convergence is 1×1<1
for both series . Then we  can  compare on  order by order basis !



⇒ ¥ ( xtxrtxs +  ×4t . .
. ) > ¥ ( ×  +  ¥ +  ¥ +  x÷ + . . . )

Therefore  adiabatic expansion Will definitely head to Super saturation  if the following
Condition  is  satisfied :

÷ > ÷
Recall that 8=3/2 and b= TYR =  4900 K for  water  vapor .

since the

critical point  of  water  is below 700 k
,

then it  is  safe to say that this

is Satisfied by any reasonable water  vapor  System .

Therefore
, yes ,

under our  assumptions , Adiabatic expansion always leads to

Super saturation
.



2.ly

We know that Cv is given by

cv= 1¥
.

Therefore we need to obtain  a form for the internal energy of
the Van der Waals gas as a function  of temperature T & volume V

.

A Hau der Waals gas follows the equation  of  state

P = TRI - af (1)

From the first law of thermodynamics we know thatp=to¥)showever it  is not  clear how to hold S constant in  Eqn ( D
. Therefore

he can recall the more accessible relation between pressure &

the Helmholtz potential A  = U - TS

⇒ dA= - SDT - PDV or P=
- (¥)+  ,

St - (o¥)✓

Integrating at  a constant temperature from  initial volume Vo to final volume ✓

⇒ A  = - nRTln(¥÷oD - a¥ + C CT )

when UT ) is an  integration constant that can depend on T
,

since T was

taken to be a constant during integration

.
 the exact expression for CCT )

is not important
,

since we only need to demonstrate that Cv only
depends  on T

,
not hew it depends  on T .

Since U= A + TS
, we must also determine the form  of S

⇒ 5-  -

(ooA⇒= nrlnH¥ ) - at )

where  a ( ' ) denotes differentiation  with respect to temperature

⇒ U = CCT ) - af - TCKT )



Now he can finally solve for Cv

⇒ Cv =
- TC

"

CT)
which Clearly depends  on T & not V

.


